假设您的数据集类似于包含温和敏感信息的CSV文件,例如谁在12年级英语课程中传递了一个注释。虽然如果这些数据出来并不是危机,但最好删除识别信息,以便将数据公之于众,与合作者共享等等。数据看起来像这样:
给予者,收件人:
安娜,乔
安娜,马克
马克,明迪
明迪,乔
你将如何处理这个列表,为每个名称分配一个唯一但任意的标识符,然后删除名称并用Python中的所述标识符替换它们,这样你最终会得到类似的结果:
1,2-
1,3
3,4-
4,2
答案 0 :(得分:5)
您可以使用hash()
生成唯一的任意标识符,它将返回始终为特定字符串返回相同的整数:
with open("data1.txt") as f:
lis=[x.split(",") for x in f]
items=[map(lambda y:hash(y.strip()),x) for x in lis]
for x in items:
print ",".join(map(str,x))
....:
-1319295970,1155173045
-1319295970,-1963774321
-1963774321,-1499251772
-1499251772,1155173045
或者您也可以使用iterools.count
:
In [80]: c=count(1)
In [81]: with open("data1.txt") as f:
lis=[map(str.strip,x.split(",")) for x in f]
dic={}
for x in set(chain(*lis)):
dic.setdefault(x.strip(),next(c))
for x in lis:
print ",".join(str(dic[y.strip()]) for y in x)
....:
3,2
3,4
4,1
1,2
或使用itertools的unique_everseen
食谱改进我以前的答案,你可以得到确切的答案:
In [84]: c=count(1)
In [85]: def unique_everseen(iterable, key=None):
seen = set()
seen_add = seen.add
if key is None:
for element in ifilterfalse(seen.__contains__, iterable):
seen_add(element)
yield element
else:
for element in iterable:
k = key(element)
if k not in seen:
seen_add(k)
yield element
....:
In [86]: with open("data1.txt") as f:
lis=[map(str.strip,x.split(",")) for x in f]
dic={}
for x in unique_everseen(chain(*lis)):
dic.setdefault(x.strip(),next(c))
for x in lis:
print ",".join(str(dic[y.strip()]) for y in x)
....:
1,2
1,3
3,4
4,2
答案 1 :(得分:3)
names = """
Anna,Joe
Anna,Mark
Mark,Mindy
Mindy,Joe
"""
nameset = set((",".join(names.strip().splitlines())).split(","))
for i,name in enumerate(nameset):
names = names.replace(name,str(i))
print names
2,1
2,3
3,0
0,1
答案 2 :(得分:2)
您可以使用hash
获取每个名称的唯一ID,您可以使用字典将名称映射到其值(如果您希望数字与示例中一样):
data = [("Anna", "Joe"), ("Anna", "Mark"), ("Mark", "Mindy"), ("Mindy", "Joe")]
names = {}
def anon(name):
if not name in names:
names[name] = len(names) + 1
return names[name]
result = []
for n1, n2 in data:
result.append((anon(n1), anon(n2)))
print names
print result
运行时会给出:
{'Mindy': 4, 'Joe': 2, 'Anna': 1, 'Mark': 3}
[(1, 2), (1, 3), (3, 4), (4, 2)]
答案 3 :(得分:2)
首先,将您的文件读入行列表:
import csv
with open('myFile.csv') as f:
rows = [row for row in csv.reader(f)]
此时,您可以构建一个dict来保存映射:
nameSet = set()
for row in rows:
for name in row:
nameSet.add(name)
map = dict((name, i) for i, name in enumerate(nameSet))
或者,您可以直接构建dict:
nextID = 0
map = {}
for row in rows:
for name in row:
if name not in map:
map[name] = nextID
nextID += 1
无论哪种方式,您再次遍历行并应用映射:
output = [[map[name] for name in row] for row in rows]
答案 4 :(得分:2)
要真正匿名化数据,您需要名称的随机别名。哈希对此有好处,但如果您只想将每个名称映射到整数,则可以执行以下操作:
from random import shuffle
data = [("Anna", "Joe"), ("Anna", "Mark"), ("Mark", "Mindy"), ("Mindy", "Joe")]
names = list(set(x for pair in data for x in pair))
shuffle(names)
aliases = dict((k, v) for v, k in enumerate(names))
munged = [(aliases[a], aliases[b]) for a, b in data]
那会给你类似的东西:
>>> data
[('Anna', 'Joe'), ('Anna', 'Mark'), ('Mark', 'Mindy'), ('Mindy', 'Joe')]
>>> names
['Mindy', 'Joe', 'Anna', 'Mark']
>>> aliases
{'Mindy': 0, 'Joe': 1, 'Anna': 2, 'Mark': 3}
>>> munged
[(2, 1), (2, 3), (3, 0), (0, 1)]
然后,您可以(如果需要)从别名中获取名称,反之亦然:
>>> aliases["Joe"]
1
>>> names[2]
'Anna'