我有一个包含数据块的二维数组,我创建了一个函数来计算每个值过零的次数。
我正在使用MatLab并尝试转换代码并且MatLab返回过零和C ++代码的287值,值非常高,我似乎无法弄清楚原因。
这是Matlab代码:
function f = zerocross(vector)
% This function simply reports the number of times
% that the input vector crosses the zero boundary
len = length(vector);
currsum = 0;
prevsign = 0;
for i = 1:len
currsign = sign(vector(i));
if (currsign * prevsign) == -1
currsum = currsum + 1;
end
if currsign ~= 0
prevsign = currsign;
end
end
f = currsum;
我的C ++代码:
vector<iniMatrix> Audio::filter(vector<iniMatrix>&blocks, double sumThres, double ZeroThres)
{
double totalSum = this->width * sumThres;
double totalZero = this->width * ZeroThres;
int currZero = 0;
int currsum = 0;
int prevsign = 0;
for(unsigned i=0; (i < 287); i++)
{
for(int j=0; (j < blocks.size()); j++)
{
currZero = sign<double>(blocks[j][i]);
if(currZero * prevsign == -1)
{
currsum++;
}
if(currZero != 0)
{
prevsign = currZero;
}
}
cout << currsum << endl;
}
return blocks;
签名功能:
int sign(T n)
{
if(n < 0) return -1;
if(n > 0) return 1;
return n;
}
我应该(和matlab给出的)的值是:
6,6,7,9,9,10 ..,11,...,9,......
我得到的值:
212,337,118,84,....,348,...,92
有人有什么想法吗?
编辑:
这就是我现在的循环方式:
for(int q=0; (q < 287); q++)
{
for(unsigned i=0; (i < blocks.size()); i++)
{
for(unsigned j=0; (j < blocks[0].size()); j++)
{
currZero = sign<double>(blocks[i][j]);
cout << currZero << endl;
}
cout << endl << endl << endl;
}
//cout << currZero << endl;
}
答案 0 :(得分:0)
在Matlab中大量使用for循环传统上通常是个坏主意,因为Matlab的JIT编译器不是很快(或者不是很快)(至少没有比较)到本机C代码)。我猜你写了C ++代码来加速计算,但也许另一种方法是用matlab编写代码&#39;:
vector = rand(1e7,1)-0.1;
zero_crossings = sum(diff(array<0)~=0);
虽然我刚刚在Matlab 2015b上测试过,但矢量化代码的速度只有原来的两倍:
function test()
function currsum = zerocross(vector)
% This function simply reports the number of times
% that the input vector crosses the zero boundary
len = length(vector);
currsum = 0;
prevsign = 0;
for i = 1:len
currsign = sign(vector(i));
if (currsign * prevsign) == -1
currsum = currsum + 1;
end
if currsign ~= 0
prevsign = currsign;
end
end
end
function f = zerocross_vectorized(array)
f = sum(diff(array<0)~=0);
end
array = rand(1e5,1e3)-0.1;
% test for loop
t = tic;
crossings = nan(1,size(array,2));
for column = 1:size(array,2)
vector = array(:,column);
crossings(column) = zerocross(vector);
end
disp(crossings(1:5))
fprintf(1,'For loop: Calculated in %0.4f seconds\n',toc(t));
% test vectorized
t = tic;
crossings = zerocross_vectorized(array);
disp(crossings(1:5))
fprintf(1,'Vectorized: Calculated in %0.4f seconds\n',toc(t));
end
结果是:
>> zerocross
18208 17884 17902 17734 17988
For loop: Calculated in 1.7186 seconds
18208 17884 17902 17734 17988
Vectorized: Calculated in 0.9695 seconds