我正在尝试通过RInside在C ++中使用R.我无法将犰狳矩阵传递给R并返回结果。下面我能够从R库函数返回结果,但是我得到了错误的结果。我正在使用moment包中的skewness函数作为示例,它在R中应该起作用。我检查了来自RInside的示例,我仍然不确定如何使用RcppArmadillo。如何正确地将c ++中的犰狳矩阵传递给R?
#include <RInside.h>
#include <RcppArmadillo.h>
using namespace std;
using namespace arma;
int main(int argc, char *argv[]) {
RInside R(argc, argv);
string R_libs = "suppressMessages(library(moments));";
R.parseEvalQ(R_libs);
mat A = randu<mat>(5,5);
R["A"] = A;
string R_skewness = "B <- skewness(A);";
//this fails
mat B = Rcpp::as<mat>(R.parseEval(R_skewness)); //terminate called after throwing an instance of 'Rcpp::not_a_matrix'
//this works but wrong
mat B = Rcpp::as<vec>(R.parseEval(R_skewness)); // returns only 1 number, should be 5 ( 1 for each columnn), same result if i change mat B to vec B
exit(0);
}
答案 0 :(得分:5)
我们实现as<mat>
的方式要求您传递的R对象是一个矩阵。在您的示例中,B
是一个向量:
> A <- matrix( runif(25), ncol = 5)
> A
[,1] [,2] [,3] [,4] [,5]
[1,] 0.19215339 0.5857249 0.14345222 0.32154176 0.6162155
[2,] 0.95753898 0.9618379 0.06239842 0.06200197 0.7044018
[3,] 0.33575790 0.1372804 0.03027635 0.62662467 0.9778451
[4,] 0.16504957 0.1919765 0.49176372 0.94841456 0.2914772
[5,] 0.01570709 0.8055231 0.51218581 0.79562809 0.6939380
> B <- skewness( A )
> B
[1] 1.15196587 -0.04547576 0.32186257 -0.30788111 -0.29251009
要转换为arma::vec
,我不会重现您看到的行为。 arma::vec
有3个元素:
require( RcppArmadillo ) ## and make sure you have Rcpp 0.10.0 or later
sourceCpp( code = '
// [[Rcpp::depends("RcppArmadillo")]]
#include <RcppArmadillo.h>
using namespace arma ;
using namespace Rcpp ;
// [[Rcpp::export]]
List foo( NumericVector x){
vec B = Rcpp::as<vec>(x);
return List::create(
_["nrows"] = B.n_rows,
_["ncols"] = B.n_cols
) ;
}
')
foo( c(1, 2, 3 ) )
# $nrows
# [1] 3
#
# $ncols
# [1] 1
答案 1 :(得分:4)
您正在尝试复合表达式,涉及几个重度模板化的库。那可能会出错。我建议分段进行:
确保您预期传递给嵌入式R的矩阵A
确保函数调用正常,检查结果。
重要提示:检查结果类型。矩阵应该可以恢复正常。
将结果返回给C ++。
将它送到Rcpp。
使用RcppArmadillo编组来到犰狳。
原则上,这应该有效。魔鬼一如既往地处于细节之中。