我正在尝试在Matlab中实现Prewitt过滤器。我知道Matlab已经有了这种过滤器,但我需要自己编写代码。下面是我的代码,唯一的问题是在滤镜结束时我得到一个明亮的图像而不是看到边缘。 我正在使用Prewitt过滤器的可分离性来实现过滤器。有任何想法吗?我非常感谢你的帮助。
%% 3x3 Prewitt Filter
close all
imageIn = imread('images/Bikesgray.jpg');
imageGx = zeros(size(imageIn));
imageGy = zeros(size(imageIn));
imageOut = zeros(size(imageIn));
ny = size(imageIn, 1);
nx = size(imageIn, 2);
average = 3;
imshow(imageIn);
u = [];
v = [];
tic
%Compute Gx
%For every row use the mask (-1 0 1)
for i = 1:ny
u = imageIn(i,:);
v = zeros(1, nx);
for k = 2:nx-1
v(k) = (uint32(-1*u(k-1))+uint32(0*u(k))+uint32(u(k+1)));
end
v(1) = (uint32(-1*u(2))+uint32(0*u(1))+uint32(u(2)));
v(nx) = (uint32(-1*u(nx-1))+uint32(0*u(nx))+uint32(u(nx-1)));
imageGx(i,:) = v;
end
%For every column use the mask (1 1 1)
for j = 1:nx
u = imageGx(:,j);
v = zeros(ny, 1);
for k = 2:ny-1
v(k) = (uint32(u(k-1))+uint32(u(k))+uint32(u(k+1)));
end
v(1) = (uint32(u(2))+uint32(u(1))+uint32(u(2)));
v(ny) = (uint32(u(ny-1))+uint32(u(ny))+uint32(u(ny-1)));
imageGx(:,j) = v;
end
%Compute Gy
%For every row use the mask (1 1 1)
for i = 1:ny
u = imageIn(i,:);
v = zeros(1, nx);
for k = 2:nx-1
v(k) = (uint32(u(k-1))+uint32(u(k))+uint32(u(k+1)));
end
v(1) = (uint32(u(2))+uint32(u(1))+uint32(u(2)));
v(nx) = (uint32(u(nx-1))+uint32(u(nx))+uint32(u(nx-1)));
imageGy(i,:) = v;
end
%For every column use the mask (1 0 -1)
for j = 1:nx
u = imageGy(:,j);
v = zeros(ny, 1);
for k = 2:ny-1
v(k) = (uint32(u(k-1))+uint32(0*u(k))+uint32(-1*u(k+1)));
end
v(1) = (uint32(u(2))+uint32(0*u(1))+uint32(-1*u(2)));
v(ny) = (uint32(u(ny-1))+uint32(0*u(ny))+uint32(-1*u(ny-1)));
imageGy(:,j) = v;
end
toc
figure
imshow(imageGx, [0 255]);
figure
imshow(imageGy, [0 255]);
%Compute the magnitude G = sqrt(Gx^2 + Gy^2);
imageOut(:,:) = sqrt(imageGx(:,:).^2 + imageGy(:,:).^2);
figure
imshow(imageOut, [0 255]);
答案 0 :(得分:2)
你没有使用convn(卷积)太糟糕了,因为加权和只是尖叫它。
简而言之,您可以使用适当的内核在图像矩阵上使用convn来生成Gx,Gy
,如wikipedia
答案 1 :(得分:1)
解决方案非常明显,但花了我一些时间才弄明白。
我所做的只是将uint32
更改为int32
,并确保在将值从uint32
更改为int32
后执行操作(例如乘以-1)。