关于如何使用plyr包中的ldply处理不同长度的输出的简单问题。这是我正在使用的代码的简单版本以及我得到的错误:
# function to collect the coefficients from the regression models:
> SecreatWeapon <- dlply(merged1,~country.x, function(df) {
+ lm(log(child_mortality) ~ log(IHME_usd_gdppc)+ hiv_prev,data=df)
+ })
>
# functions to extract the output of interest
> extract.coefs <- function(mod) c(extract.coefs = summary(mod)$coefficients[,1])
> extract.se.coefs <- function(mod) c(extract.se.coefs = summary(mod)$coefficients[,2])
>
# function to combine the extracted output
> res <- ldply(SecreatWeapon, extract.coefs)
Error in list_to_dataframe(res, attr(.data, "split_labels")) :
Results do not have equal lengths
这里的错误是由于某些模型将包含NA值,因此:
> SecreatWeapon[[1]]
Call:
lm(formula = log(child_mortality) ~ log(IHME_usd_gdppc) + hiv_prev,
data = df)
Coefficients:
(Intercept) log(IHME_usd_gdppc) hiv_prev
-4.6811 0.5195 NA
因此以下输出的长度不同;例如:
> summary(SecreatWeapon[[1]])$coefficients
Estimate Std. Error t value Pr(>|t|)
(Intercept) -4.6811000 0.6954918 -6.730633 6.494799e-08
log(IHME_usd_gdppc) 0.5194643 0.1224292 4.242977 1.417349e-04
但对于另一个我得到了
> summary(SecreatWeapon[[10]])$coefficients
Estimate Std. Error t value Pr(>|t|)
(Intercept) 18.612698 1.7505236 10.632646 1.176347e-12
log(IHME_usd_gdppc) -2.256465 0.1773498 -12.723244 6.919009e-15
hiv_prev -272.558951 160.3704493 -1.699558 9.784053e-02
任何简单的修复方法?非常感谢,
Antonio Pedro。
答案 0 :(得分:2)
使用summary.lm( . )
访问的$coefficients
函数为具有NA“系数”的任何lm-object提供的coef
与lm
参数的输出不同。你会对使用这样的东西感到满意:
coef.se <- function(mod) {
extract.coefs <- function(mod) coef(mod) # lengths all the same
extract.se.coefs <- function(mod) { summary(mod)$coefficients[,2]}
return( merge( extract.coefs(mod), extract.se.coefs(mod), by='row.names', all=TRUE) )
}
根据罗兰的例子,它给出了:
> coef.se(fit)
Row.names x y
1 (Intercept) -0.3606557 0.1602034
2 x1 2.2131148 0.1419714
3 x2 NA NA
您可以将x重命名为coef
,将y重命名为se.coef
答案 1 :(得分:1)
y <- c(1,2,3)
x1 <- c(0.6,1.1,1.5)
x2 <- c(1,1,1)
fit <- lm(y~x1+x2)
summary(fit)$coef
# Estimate Std. Error t value Pr(>|t|)
#(Intercept) -0.3606557 0.1602034 -2.251236 0.26612016
#x1 2.2131148 0.1419714 15.588457 0.04078329
#function for full matrix, adjusted from getAnywhere(print.summary.lm)
full_coeffs <- function (fit) {
fit_sum <- summary(fit)
cn <- names(fit_sum$aliased)
coefs <- matrix(NA, length(fit_sum$aliased), 4,
dimnames = list(cn, colnames(fit_sum$coefficients)))
coefs[!fit_sum$aliased, ] <- fit_sum$coefficients
coefs
}
full_coeffs(fit)
# Estimate Std. Error t value Pr(>|t|)
#(Intercept) -0.3606557 0.1602034 -2.251236 0.26612016
#x1 2.2131148 0.1419714 15.588457 0.04078329
#x2 NA NA NA NA