从右侧移动到奇数位置,从左侧移动到偶数位置

时间:2012-11-09 15:46:46

标签: c++ algorithm time-complexity in-place

给出非空数组项。您必须将所有项目从右侧移动到奇数位置(从零开始),从左侧移动到偶数位置,如下所示:

原始数据:0 2 4 6 8 10 12 14 1 3 5 7 9 11 13

结果:0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

对于O(n)时间复杂度,存在什么就地算法?它的实施是什么?

反问题已解决here(此算法基本上可以反转,但看起来很难看。)

2 个答案:

答案 0 :(得分:1)

这里只是算法本身。有关详细信息,解释和替代方法,请参阅answer for the inverse problem

  1. 将指向右侧元素池的指针初始化为N / 2。
  2. 获得大小为3 k +1
  3. 的最大子阵列
  4. 从数组的开头加入(3 k +1)/ 2个元素,并从右侧元素池中加入(3 k +1)/ 2个元素交换适当的子阵列。更新池指针。
  5. 将循环引导算法应用于该子阵列的各个部分,从位置1,3,9开始... 3 k-1 :将元素移动到子阵列中的正确位置(从子阵列左侧到偶数位置,从右侧到奇数位置的元素),被替换的元素也应移动到其正确位置等,直到此过程返回到起始位置。
  6. 使用步骤2 .. 4来递归处理数组的其余部分。
  7. 这个问题比OP中提到的逆问题简单,因为在这里我们必须从较大的子序列开始重新排序子阵列,其顺序与循环领导算法的顺序相同(逆问题必须单独进行,以相反的顺序,从较小的开始获得O(N)复杂度。

答案 1 :(得分:1)

我终于找到了直接和反向问题的解决方案:

#include <iterator>
#include <algorithm>
#include <type_traits>
#include <limits>
#include <deque>
#include <utility>

#include <cassert>

template< typename Iterator >
struct perfect_shuffle_permutation
{

    static_assert(std::is_same< typename std::iterator_traits< Iterator >::iterator_category, std::random_access_iterator_tag >::value,
                  "!");

    using difference_type = typename std::iterator_traits< Iterator >::difference_type;
    using value_type = typename std::iterator_traits< Iterator >::value_type;

    perfect_shuffle_permutation()
    {
        for (difference_type power3_ = 1; power3_ < std::numeric_limits< difference_type >::max() / 3; power3_ *= 3) {
            powers3_.emplace_back(power3_ + 1);
        }
        powers3_.emplace_back(std::numeric_limits< difference_type >::max());
    }

    void
    forward(Iterator _begin, Iterator _end) const
    {
        return forward(_begin, std::distance(_begin, _end));
    }

    void
    backward(Iterator _begin, Iterator _end) const
    {
        return backward(_begin, std::distance(_begin, _end));
    }

    void
    forward(Iterator _begin, difference_type const _size) const
    {
        assert(0 < _size);
        assert(_size % 2 == 0);
        difference_type const left_size_ = *(std::upper_bound(powers3_.cbegin(), powers3_.cend(), _size) - 1);
        cycle_leader_forward(_begin, left_size_);
        difference_type const rest_ = _size - left_size_;
        if (rest_ != 0) {
            Iterator middle_ = _begin + left_size_;
            forward(middle_, rest_);
            std::rotate(_begin + left_size_ / 2, middle_, middle_ + rest_ / 2);
        }
    }

    void
    backward(Iterator _begin, difference_type const _size) const
    {
        assert(0 < _size);
        assert(_size % 2 == 0);
        difference_type const left_size_ = *(std::upper_bound(powers3_.cbegin(), powers3_.cend(), _size) - 1);
        std::rotate(_begin + left_size_ / 2, _begin + _size / 2, _begin + (_size + left_size_) / 2);
        cycle_leader_backward(_begin, left_size_);
        difference_type const rest_ = _size - left_size_;
        if (rest_ != 0) {
            Iterator middle_ = _begin + left_size_;
            backward(middle_, rest_);
        }
    }

private :

    void
    cycle_leader_forward(Iterator _begin, difference_type const _size) const
    {
        for (difference_type leader_ = 1; leader_ != _size - 1; leader_ *= 3) {
            permutation_forward permutation_(leader_, _size);
            Iterator current_ = _begin + leader_;
            value_type first_ = std::move(*current_);
            while (++permutation_) {
                assert(permutation_ < _size);
                Iterator next_ = _begin + permutation_;
                *current_ = std::move(*next_);
                current_ = next_;
            }
            *current_ = std::move(first_);
        }
    }

    void
    cycle_leader_backward(Iterator _begin, difference_type const _size) const
    {
        for (difference_type leader_ = 1; leader_ != _size - 1; leader_ *= 3) {
            permutation_backward permutation_(leader_, _size);
            Iterator current_ = _begin + leader_;
            value_type first_ = std::move(*current_);
            while (++permutation_) {
                assert(permutation_ < _size);
                Iterator next_ = _begin + permutation_;
                *current_ = std::move(*next_);
                current_ = next_;
            }
            *current_ = std::move(first_);
        }
    }

    struct permutation_forward
    {

        permutation_forward(difference_type const _leader, difference_type const _size)
            : leader_(_leader)
            , current_(_leader)
            , half_size_(_size / 2)
        { ; }

        bool
        operator ++ ()
        {
            if (current_ < half_size_) {
                current_ += current_;
            } else {
                current_ = 1 + (current_ - half_size_) * 2;
            }
            return (current_ != leader_);
        }

        operator difference_type () const
        {
            return current_;
        }

    private :

        difference_type const leader_;
        difference_type current_;
        difference_type const half_size_;

    };

    struct permutation_backward
    {

        permutation_backward(difference_type const _leader, difference_type const _size)
            : leader_(_leader)
            , current_(_leader)
            , half_size_(_size / 2)
        { ; }

        bool
        operator ++ ()
        {
            if ((current_ % 2) == 0) {
                current_ /= 2;
            } else {
                current_ = (current_ - 1) / 2 + half_size_;
            }
            return (current_ != leader_);
        }

        operator difference_type () const
        {
            return current_;
        }

    private :

        difference_type const leader_;
        difference_type current_;
        difference_type const half_size_;

    };

    std::deque< difference_type > powers3_;

};