数组中二进制搜索的基本思想很简单,但如果搜索无法找到确切的项目,它可能会返回“近似”索引。 (我们有时可能会返回一个值大于或小于搜索值的索引。)
为了寻找确切的插入点,似乎在得到大致位置后,我们可能需要向左或向右“扫描”确切的插入位置,因此,比如说,在Ruby中,我们可以{ {1}}
我有以下解决方案,但arr.insert(exact_index, value)
时部件的处理有点混乱。我想知道是否可以使用更优雅的解决方案?
(如果找到完全匹配,此解决方案无需扫描多个匹配,因此为完全匹配返回的索引可能指向与该值对应的任何索引...但我认为如果它们都是整数,我们总是可以在找到完全匹配后搜索begin_index >= end_index
,找到左边界,或搜索右边界的a - 1
。)
我的解决方案:
a + 1
和结果:
DEBUGGING = true
def binary_search_helper(arr, a, begin_index, end_index)
middle_index = (begin_index + end_index) / 2
puts "a = #{a}, arr[middle_index] = #{arr[middle_index]}, " +
"begin_index = #{begin_index}, end_index = #{end_index}, " +
"middle_index = #{middle_index}" if DEBUGGING
if arr[middle_index] == a
return middle_index
elsif begin_index >= end_index
index = [begin_index, end_index].min
return index if a < arr[index] && index >= 0 #careful because -1 means end of array
index = [begin_index, end_index].max
return index if a < arr[index] && index >= 0
return index + 1
elsif a > arr[middle_index]
return binary_search_helper(arr, a, middle_index + 1, end_index)
else
return binary_search_helper(arr, a, begin_index, middle_index - 1)
end
end
# for [1,3,5,7,9], searching for 6 will return index for 7 for insertion
# if exact match is found, then return that index
def binary_search(arr, a)
puts "\nSearching for #{a} in #{arr}" if DEBUGGING
return 0 if arr.empty?
result = binary_search_helper(arr, a, 0, arr.length - 1)
puts "the result is #{result}, the index for value #{arr[result].inspect}" if DEBUGGING
return result
end
arr = [1,3,5,7,9]
b = 6
arr.insert(binary_search(arr, b), b)
p arr
arr = [1,3,5,7,9,11]
b = 6
arr.insert(binary_search(arr, b), b)
p arr
arr = [1,3,5,7,9]
b = 60
arr.insert(binary_search(arr, b), b)
p arr
arr = [1,3,5,7,9,11]
b = 60
arr.insert(binary_search(arr, b), b)
p arr
arr = [1,3,5,7,9]
b = -60
arr.insert(binary_search(arr, b), b)
p arr
arr = [1,3,5,7,9,11]
b = -60
arr.insert(binary_search(arr, b), b)
p arr
arr = [1]
b = -60
arr.insert(binary_search(arr, b), b)
p arr
arr = [1]
b = 60
arr.insert(binary_search(arr, b), b)
p arr
arr = []
b = 60
arr.insert(binary_search(arr, b), b)
p arr
答案 0 :(得分:11)
这是来自Java的java.util.Arrays.binarySearch的代码,包含在Oracles Java中:
/**
* Searches the specified array of ints for the specified value using the
* binary search algorithm. The array must be sorted (as
* by the {@link #sort(int[])} method) prior to making this call. If it
* is not sorted, the results are undefined. If the array contains
* multiple elements with the specified value, there is no guarantee which
* one will be found.
*
* @param a the array to be searched
* @param key the value to be searched for
* @return index of the search key, if it is contained in the array;
* otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>. The
* <i>insertion point</i> is defined as the point at which the
* key would be inserted into the array: the index of the first
* element greater than the key, or <tt>a.length</tt> if all
* elements in the array are less than the specified key. Note
* that this guarantees that the return value will be >= 0 if
* and only if the key is found.
*/
public static int binarySearch(int[] a, int key) {
return binarySearch0(a, 0, a.length, key);
}
// Like public version, but without range checks.
private static int binarySearch0(int[] a, int fromIndex, int toIndex,
int key) {
int low = fromIndex;
int high = toIndex - 1;
while (low <= high) {
int mid = (low + high) >>> 1;
int midVal = a[mid];
if (midVal < key)
low = mid + 1;
else if (midVal > key)
high = mid - 1;
else
return mid; // key found
}
return -(low + 1); // key not found.
}
该算法已被证明是合适的,我喜欢这样一个事实,即您可以从结果中立即知道它是否与插入点完全匹配或提示。
这就是我将其翻译成ruby的方式:
# Inserts the specified value into the specified array using the binary
# search algorithm. The array must be sorted prior to making this call.
# If it is not sorted, the results are undefined. If the array contains
# multiple elements with the specified value, there is no guarantee
# which one will be found.
#
# @param [Array] array the ordered array into which value should be inserted
# @param [Object] value the value to insert
# @param [Fixnum|Bignum] from_index ordered sub-array starts at
# @param [Fixnum|Bignum] to_index ordered sub-array ends the field before
# @return [Array] the resulting array
def self.insert(array, value, from_index=0, to_index=array.length)
array.insert insertion_point(array, value, from_index, to_index), value
end
# Searches the specified array for an insertion point ot the specified value
# using the binary search algorithm. The array must be sorted prior to making
# this call. If it is not sorted, the results are undefined. If the array
# contains multiple elements with the specified value, there is no guarantee
# which one will be found.
#
# @param [Array] array the ordered array into which value should be inserted
# @param [Object] value the value to insert
# @param [Fixnum|Bignum] from_index ordered sub-array starts at
# @param [Fixnum|Bignum] to_index ordered sub-array ends the field before
# @return [Fixnum|Bignum] the position where value should be inserted
def self.insertion_point(array, value, from_index=0, to_index=array.length)
raise(ArgumentError, 'Invalid Range') if from_index < 0 || from_index > array.length || from_index > to_index || to_index > array.length
binary_search = _binary_search(array, value, from_index, to_index)
if binary_search < 0
-(binary_search + 1)
else
binary_search
end
end
# Searches the specified array for the specified value using the binary
# search algorithm. The array must be sorted prior to making this call.
# If it is not sorted, the results are undefined. If the array contains
# multiple elements with the specified value, there is no guarantee which
# one will be found.
#
# @param [Array] array the ordered array in which the value should be searched
# @param [Object] value the value to search for
# @param [Fixnum|Bignum] from_index ordered sub-array starts at
# @param [Fixnum|Bignum] to_index ordered sub-array ends the field before
# @return [Fixnum|Bignum] if > 0 position of value, otherwise -(insertion_point + 1)
def self.binary_search(array, value, from_index=0, to_index=array.length)
raise(ArgumentError, 'Invalid Range') if from_index < 0 || from_index > array.length || from_index > to_index || to_index > array.length
_binary_search(array, value, from_index, to_index)
end
private
# Like binary_search, but without range checks.
#
# @param [Array] array the ordered array in which the value should be searched
# @param [Object] value the value to search for
# @param [Fixnum|Bignum] from_index ordered sub-array starts at
# @param [Fixnum|Bignum] to_index ordered sub-array ends the field before
# @return [Fixnum|Bignum] if > 0 position of value, otherwise -(insertion_point + 1)
def self._binary_search(array, value, from_index, to_index)
low = from_index
high = to_index - 1
while low <= high do
mid = (low + high) / 2
mid_val = array[mid]
if mid_val < value
low = mid + 1
elsif mid_val > value
high = mid - 1
else
return mid # value found
end
end
-(low + 1) # value not found.
end
代码返回与为其测试数据提供的OP相同的值。
答案 1 :(得分:0)
实际上,不是检查begin_index >= end_index
,而是使用begin_index > end_index
更好地处理,解决方案更清晰:
def binary_search_helper(arr, a, begin_index, end_index)
if begin_index > end_index
return begin_index
else
middle_index = (begin_index + end_index) / 2
if arr[middle_index] == a
return middle_index
elsif a > arr[middle_index]
return binary_search_helper(arr, a, middle_index + 1, end_index)
else
return binary_search_helper(arr, a, begin_index, middle_index - 1)
end
end
end
# for [1,3,5,7,9], searching for 6 will return index for 7 for insertion
# if exact match is found, then return that index
def binary_search(arr, a)
return binary_search_helper(arr, a, 0, arr.length - 1)
end
使用迭代而不是递归可能会更快,并且不必担心堆栈溢出。