C ++ 11可重入类锁定策略

时间:2012-11-05 20:40:20

标签: c++ design-patterns boost c++11 locking

我有一个使用pimpl习语的界面,但界面需要是可重入的。但是,调用线程不需要知道锁定。这是四部分问题和一部分无偿设计的C ++ 11示例(示例包括解决我遇到的几个类似FAQ的问题:lockingpimplrvalue和C ++ 11的答案在质量上有些不确定。)

在标题中,example.hpp:

#ifndef EXAMPLE_HPP
#define EXAMPLE_HPP

#include <memory>
#include <string>

#ifndef BOOST_THREAD_SHARED_MUTEX_HPP
# include <boost/thread/shared_mutex.hpp>
#endif

namespace stackoverflow {

class Example final {
public:
  typedef ::boost::shared_mutex shared_mtx_t;
  typedef ::boost::shared_lock< shared_mtx_t > shared_lock_t;
  typedef ::boost::unique_lock< shared_mtx_t > unique_lock_t;

  Example();
  Example(const std::string& initial_foo);

  ~Example();
  Example(const Example&) = delete;             // Prevent copying
  Example& operator=(const Example&) = delete;  // Prevent assignment

  // Example getter method that supports rvalues
  std::string foo() const;

  // Example setter method using perfect forwarding & move semantics. Anything
  // that's std::string-like will work as a parameter.
  template<typename T>
  bool foo_set(T&& new_val);

  // Begin foo_set() variants required to deal with C types (e.g. char[],
  // char*). The rest of the foo_set() methods here are *NOT* required under
  // normal circumstances.

  // Setup a specialization for const char[] that simply forwards along a
  // std::string. This is preferred over having to explicitly instantiate a
  // bunch of const char[N] templates or possibly std::decay a char[] to a
  // char* (i.e. using a std::string as a container is a Good Thing(tm)).
  //
  // Also, without this, it is required to explicitly instantiate the required
  // variants of const char[N] someplace. For example, in example.cpp:
  //
  // template bool Example::foo_set<const char(&)[6]>(char const (&)[6]);
  // template bool Example::foo_set<const char(&)[7]>(char const (&)[7]);
  // template bool Example::foo_set<const char(&)[8]>(char const (&)[8]);
  // ...
  //
  // Eww. Best to just forward to wrap new_val in a std::string and proxy
  // along the call to foo_set<std::string>().
  template<std::size_t N>
  bool foo_set(const char (&new_val)[N]) { return foo_set(std::string(new_val, N)); }

  // Inline function overloads to support null terminated char* && const
  // char* arguments. If there's a way to reduce this duplication with
  // templates, I'm all ears because I wasn't able to generate a templated
  // versions that didn't conflict with foo_set<T&&>().
  bool foo_set(char* new_val)       { return foo_set(std::string(new_val)); }
  bool foo_set(const char* new_val) { return foo_set(std::string(new_val)); }

  // End of the foo_set() overloads.

  // Example getter method for a POD data type
  bool bar(const std::size_t len, char* dst) const;
  std::size_t bar_capacity() const;

  // Example setter that uses a unique lock to access foo()
  bool bar_set(const std::size_t len, const char* src);

  // Question #1: I can't find any harm in making Impl public because the
  // definition is opaque. Making Impl public, however, greatly helps with
  // implementing Example, which does have access to Example::Impl's
  // interface. This is also preferre, IMO, over using friend.
  class Impl;

private:
  mutable shared_mtx_t rw_mtx_;
  std::unique_ptr<Impl> impl_;
};

} // namespace stackoverflow

#endif // EXAMPLE_HPP

然后在实施中:

#include "example.hpp"

#include <algorithm>
#include <cstring>
#include <utility>

namespace stackoverflow {

class Example;
class Example::Impl;


#if !defined(_MSC_VER) || _MSC_VER > 1600
// Congratulations!, you're using a compiler that isn't broken

// Explicitly instantiate std::string variants
template bool Example::foo_set<std::string>(std::string&& src);
template bool Example::foo_set<std::string&>(std::string& src);
template bool Example::foo_set<const std::string&>(const std::string& src);

// The following isn't required because of the array Example::foo_set()
// specialization, but I'm leaving it here for reference.
//
// template bool Example::foo_set<const char(&)[7]>(char const (&)[7]);
#else
// MSVC workaround: msvc_rage_hate() isn't ever called, but use it to
// instantiate all of the required templates.
namespace {
  void msvc_rage_hate() {
    Example e;
    const std::string a_const_str("a");
    std::string a_str("b");
    e.foo_set(a_const_str);
    e.foo_set(a_str);
    e.foo_set("c");
    e.foo_set(std::string("d"));
  }
} // anon namespace
#endif // _MSC_VER



// Example Private Implementation

class Example::Impl final {
public:
  // ctors && obj boilerplate
  Impl();
  Impl(const std::string& init_foo);
  ~Impl() = default;
  Impl(const Impl&) = delete;
  Impl& operator=(const Impl&) = delete;

  // Use a template because we don't care which Lockable concept or LockType
  // is being used, just so long as a lock is held.
  template <typename LockType>
  bool bar(LockType& lk, std::size_t len, char* dst) const;

  template <typename LockType>
  std::size_t bar_capacity(LockType& lk) const;

  // bar_set() requires a unique lock
  bool bar_set(unique_lock_t& lk, const std::size_t len, const char* src);

  template <typename LockType>
  std::string foo(LockType& lk) const;

  template <typename T>
  bool foo_set(unique_lock_t& lk, T&& src);

private:
  // Example datatype that supports rvalue references
  std::string foo_;

  // Example POD datatype that doesn't support rvalue
  static const std::size_t bar_capacity_ = 16;
  char bar_[bar_capacity_ + 1];
};

// Example delegating ctor
Example::Impl::Impl() : Impl("default foo value") {}

Example::Impl::Impl(const std::string& init_foo) : foo_{init_foo} {
  std::memset(bar_, 99 /* ASCII 'c' */, bar_capacity_);
  bar_[bar_capacity_] = '\0'; // null padding
}


template <typename LockType>
bool
Example::Impl::bar(LockType& lk, const std::size_t len, char* dst) const {
  BOOST_ASSERT(lk.owns_lock());
  if (len != bar_capacity(lk))
    return false;
  std::memcpy(dst, bar_, len);

  return true;
}


template <typename LockType>
std::size_t
Example::Impl::bar_capacity(LockType& lk) const {
  BOOST_ASSERT(lk.owns_lock());
  return Impl::bar_capacity_;
}


bool
Example::Impl::bar_set(unique_lock_t &lk, const std::size_t len, const char* src) {
  BOOST_ASSERT(lk.owns_lock());

  // Return false if len is bigger than bar_capacity or the values are
  // identical
  if (len > bar_capacity(lk) || foo(lk) == src)
    return false;

  // Copy src to bar_, a side effect of updating foo_ if they're different
  std::memcpy(bar_, src, std::min(len, bar_capacity(lk)));
  foo_set(lk, std::string(src, len));
  return true;
}


template <typename LockType>
std::string
Example::Impl::foo(LockType& lk) const {
  BOOST_ASSERT(lk.owns_lock());
  return foo_;
}


template <typename T>
bool
Example::Impl::foo_set(unique_lock_t &lk, T&& src) {
  BOOST_ASSERT(lk.owns_lock());
  if (foo_ == src) return false;
  foo_ = std::move(src);
  return true;
}


// Example Public Interface

Example::Example() : impl_(new Impl{}) {}
Example::Example(const std::string& init_foo) : impl_(new Impl{init_foo}) {}
Example::~Example() = default;

bool
Example::bar(const std::size_t len, char* dst) const {
  shared_lock_t lk(rw_mtx_);
  return impl_->bar(lk, len , dst);
}

std::size_t
Example::bar_capacity() const {
  shared_lock_t lk(rw_mtx_);
  return impl_->bar_capacity(lk);
}

bool
Example::bar_set(const std::size_t len, const char* src) {
  unique_lock_t lk(rw_mtx_);
  return impl_->bar_set(lk, len, src);
}

std::string
Example::foo() const {
  shared_lock_t lk(rw_mtx_);
  return impl_->foo(lk);
}

template<typename T>
bool
Example::foo_set(T&& src) {
  unique_lock_t lk(rw_mtx_);
  return impl_->foo_set(lk, std::forward<T>(src));
}

} // namespace stackoverflow

我的问题是:

  1. 是否有更好的方法来处理私有实现中的锁定?
  2. 鉴于定义是不透明的,在公开Impl时是否有任何实际的伤害?
  3. 当使用clang的-O4启用Link-Time Optimization时,链接器应该可以绕过std::unique_ptr的取消引用开销。有人核实过吗?
  4. 有没有办法调用foo_set("asdf")并正确显示示例链接?我们在确定const char[6]的正确显式模板实例化时遇到了问题。现在我已经设置了一个模板专门化,它创建了一个std::string对象并代理了对foo_set()的调用。考虑到所有事情,这似乎是最好的前进方式,但我想知道如何传递“asdf”和std::decay结果。
  5. 关于锁定策略,由于以下几个原因,我对此产生了明显的偏见:

    • 我可以在适当的情况下将互斥锁更改为独占的互斥锁
    • 通过设计Impl API来包含所需的锁,锁定语义有很强的编译时保证
    • 很难忘记锁定某些内容(以及发生这种情况时的“简单API”错误,编译器会在修复API后再次捕获此内容)
    • 由于RAII并且Impl没有引用互斥锁而很难将某些东西锁定或造成死锁
    • 使用模板无需将唯一锁降级为共享锁
    • 因为这种锁定策略涵盖的代码多于实际需要的代码,所以需要明确的努力将锁从独特降级为共享,这样可以处理一个非常常见的情况,在这种情况下,使用共享锁做出的假设需要在进入时重新测试一个独特的锁定区域
    • 错误修复或Impl API更改不需要重新编译整个应用程序,因为example.hpp的API是外部修复的。

    我已经读过ACE也使用这种类型的锁定策略,但我欢迎来自ACE用户或其他人的一些现实批评:将锁定作为界面的必需部分传递。< / p>

    为了完整起见,这里有一个example_main.cpp供人们去咀嚼。

    #include <sysexits.h>
    
    #include <cassert>
    #include <iostream>
    #include <memory>
    #include <stdexcept>
    
    #include "example.hpp"
    
    int
    main(const int /*argc*/, const char** /*argv*/) {
      using std::cout;
      using std::endl;
      using stackoverflow::Example;
    
      {
        Example e;
        cout << "Example's foo w/ empty ctor arg: " << e.foo() << endl;
      }
    
      {
        Example e("foo");
        cout << "Example's foo w/ ctor arg: " << e.foo() << endl;
      }
    
      try {
        Example e;
        { // Test assignment from std::string
          std::string str("cccccccc");
          e.foo_set(str);
          assert(e.foo() == "cccccccc");  // Value is the same
          assert(str.empty());            // Stole the contents of a_str
        }
        { // Test assignment from a const std::string
          const std::string const_str("bbbbbbb");
          e.foo_set(const_str);
          assert(const_str == "bbbbbbb");               // Value is the same
          assert(const_str.c_str() != e.foo().c_str()); // Made a copy
        }
        {
          // Test a const char[7] and a temporary std::string
          e.foo_set("foobar");
          e.foo_set(std::string("ddddd"));
        }
        { // Test char[7]
          char buf[7] = {"foobar"};
          e.foo_set(buf);
          assert(e.foo() == "foobar");
        }
        { //// And a *char[] & const *char[]
          // Use unique_ptr to automatically free buf
          std::unique_ptr<char[]> buf(new char[7]);
          std::memcpy(buf.get(), "foobar", 6);
          buf[6] = '\0';
          e.foo_set(buf.get());
          const char* const_ptr = buf.get();
          e.foo_set(const_ptr);
          assert(e.foo() == "foobar");
        }
    
        cout << "Example's bar capacity: " << e.bar_capacity() << endl;
        const std::size_t len = e.bar_capacity();
    
        std::unique_ptr<char[]> buf(new char[len +1]);
    
        // Copy bar in to buf
        if (!e.bar(len, buf.get()))
          throw std::runtime_error("Unable to get bar");
        buf[len] = '\0'; // Null terminate the C string
        cout << endl << "foo and bar (a.k.a.) have different values:" << endl;
        cout << "Example's foo value: " << e.foo() << endl;
        cout << "Example's bar value: " << buf.get() << endl;
    
        // Set bar, which has a side effect of calling foo_set()
        buf[0] = 'c'; buf[1] = buf[2] = '+'; buf[3] = '\0';
        if (!e.bar_set(sizeof("c++") - 1, buf.get()))
          throw std::runtime_error("Unable to set bar");
    
        cout << endl << "foo and bar now have identical values but only one lock was acquired when setting:" << endl;
        cout << "Example's foo value: " << e.foo() << endl;
        cout << "Example's bar value: " << buf.get() << endl;
      } catch (...) {
        return EX_SOFTWARE;
      }
    
      return EX_OK;
    }
    

    构建使用C++11libc++的说明:

    clang++ -O4 -std=c++11 -stdlib=libc++ -I/path/to/boost/include -o example.cpp.o -c example.cpp
    clang++ -O4 -std=c++11 -stdlib=libc++ -I/path/to/boost/include -o example_main.cpp.o -c example_main.cpp
    clang++ -O4 -stdlib=libc++ -o example example.cpp.o example_main.cpp.o /path/to/boost/lib/libboost_exception-mt.dylib /path/to/boost/lib/libboost_system-mt.dylib /path/to/boost/lib/libboost_thread-mt.dylib
    

    作为一个小小的奖励,我更新了这个例子,使用foo_set()方法中的右值引用包含完美转发。虽然不完美,但是花费的时间比我预期的要长,以使模板实例化正确,这在链接时是一个问题。这还包括C基本类型的适当重载,包括:char*const char*char[N]const char[N]

2 个答案:

答案 0 :(得分:1)

对于问题1,我想要做的一件事是使用SFINAE来限制传入的锁定类型LockType允许shared_lock_tunique_lock_t

即:

template <typename LockType>
typename std::enable_if<
  std::is_same< LockType, shared_lock_t > || std::is_same< LockType, unique_lock_t >,
  size_t
>::type 
bar_capacity(LockType& lk) const;

...但确实有点冗长。

这意味着传入错误类型的Lock会给出“无匹配”错误。另一种方法是使两个不同的bar_capacity公开,shared_lock_tunique_lock_t公开,私人bar_capacity认为它们采用模板LockType

正如所写,任何具有.owns_lock()方法的类型都返回可转换为bool的类型,这是一个有效的参数......

答案 1 :(得分:1)

使用Pimpl习语,互斥体应该是实现的一部分。这将使您在锁定启动时掌握。

BTW,为什么在lock_guard足够的时候使用unique_lock?

我认为没有任何优势可以公开。

std :: unique_ptr应该与大多数现代编译器的指针一样高效。但未经过验证。

我会将const char [N] foo_set转发为

  template<std::size_t N>
  bool foo_set(const char (&new_val)[N]) { return foo_set(std::string(new_val, N)); }

但是喜欢

  template<std::size_t N>
  bool foo_set(const char (&new_val)[N]) { return foo_set(N, new_val); }

这样可以避免在头文件上创建字符串,并让实现执行任何需要的操作。