我在这里使用这个例子进行讨论: ggplot map with l
library(rgdal)
library(ggplot2)
library(maptools)
# Data from http://thematicmapping.org/downloads/world_borders.php.
# Direct link: http://thematicmapping.org/downloads/TM_WORLD_BORDERS_SIMPL-0.3.zip
# Unpack and put the files in a dir 'data'
gpclibPermit()
world.map <- readOGR(dsn="data", layer="TM_WORLD_BORDERS_SIMPL-0.3")
world.ggmap <- fortify(world.map, region = "NAME")
n <- length(unique(world.ggmap$id))
df <- data.frame(id = unique(world.ggmap$id),
growth = 4*runif(n),
category = factor(sample(1:5, n, replace=T)))
## noise
df[c(sample(1:100,40)),c("growth", "category")] <- NA
ggplot(df, aes(map_id = id)) +
geom_map(aes(fill = growth, color = category), map =world.ggmap) +
expand_limits(x = world.ggmap$long, y = world.ggmap$lat) +
scale_fill_gradient(low = "red", high = "blue", guide = "colorbar")
给出以下结果:
我想将一个变量映射到一个国家的左半部分,将一个不同的变量映射到该国的右半部分。我把“一半”放在引号中因为它没有明确定义(或者至少我没有明确定义它)。 Ian Fellows的答案可能有所帮助(这为获得质心提供了一种简单的方法)。我希望有一些东西,以便我可以在示例中aes(left_half_color = growth, right_half_color = category)
。如果不同的话,我也会对上半部分和下半部分感兴趣。
如果可能的话,我还想把两半的个体质心映射到某个东西。
答案 0 :(得分:26)
这是一个没有ggplot
的解决方案,它依赖于plot
函数。除了OP:
rgeos
包
编辑现在减少10%的视觉疼痛
编辑2 现在有东和西半部的质心
library(rgeos)
library(RColorBrewer)
# Get centroids of countries
theCents <- coordinates(world.map)
# extract the polygons objects
pl <- slot(world.map, "polygons")
# Create square polygons that cover the east (left) half of each country's bbox
lpolys <- lapply(seq_along(pl), function(x) {
lbox <- bbox(pl[[x]])
lbox[1, 2] <- theCents[x, 1]
Polygon(expand.grid(lbox[1,], lbox[2,])[c(1,3,4,2,1),])
})
# Slightly different data handling
wmRN <- row.names(world.map)
n <- nrow(world.map@data)
world.map@data[, c("growth", "category")] <- list(growth = 4*runif(n),
category = factor(sample(1:5, n, replace=TRUE)))
# Determine the intersection of each country with the respective "left polygon"
lPolys <- lapply(seq_along(lpolys), function(x) {
curLPol <- SpatialPolygons(list(Polygons(lpolys[x], wmRN[x])),
proj4string=CRS(proj4string(world.map)))
curPl <- SpatialPolygons(pl[x], proj4string=CRS(proj4string(world.map)))
theInt <- gIntersection(curLPol, curPl, id = wmRN[x])
theInt
})
# Create a SpatialPolygonDataFrame of the intersections
lSPDF <- SpatialPolygonsDataFrame(SpatialPolygons(unlist(lapply(lPolys,
slot, "polygons")), proj4string = CRS(proj4string(world.map))),
world.map@data)
##########
## EDIT ##
##########
# Create a slightly less harsh color set
s_growth <- scale(world.map@data$growth,
center = min(world.map@data$growth), scale = max(world.map@data$growth))
growthRGB <- colorRamp(c("red", "blue"))(s_growth)
growthCols <- apply(growthRGB, 1, function(x) rgb(x[1], x[2], x[3],
maxColorValue = 255))
catCols <- brewer.pal(nlevels(lSPDF@data$category), "Pastel2")
# and plot
plot(world.map, col = growthCols, bg = "grey90")
plot(lSPDF, col = catCols[lSPDF@data$category], add = TRUE)
也许有人可以使用ggplot2
找到一个好的解决方案。但是,基于this answer关于单个图表的多个填充比例的问题(“你不能”),如果没有分面,则ggplot2
解决方案似乎不太可能(这可能是一个很好的方法,如建议的那样)在上面的评论中。)
编辑:将两半的质心映射到某个东西:东部(“左”)半部的质心可以通过
获得coordinates(lSPDF)
通过以类似的方式创建rSPDF
对象,可以获得西部(“右”)半部分:
# Create square polygons that cover west (right) half of each country's bbox
rpolys <- lapply(seq_along(pl), function(x) {
rbox <- bbox(pl[[x]])
rbox[1, 1] <- theCents[x, 1]
Polygon(expand.grid(rbox[1,], rbox[2,])[c(1,3,4,2,1),])
})
# Determine the intersection of each country with the respective "right polygon"
rPolys <- lapply(seq_along(rpolys), function(x) {
curRPol <- SpatialPolygons(list(Polygons(rpolys[x], wmRN[x])),
proj4string=CRS(proj4string(world.map)))
curPl <- SpatialPolygons(pl[x], proj4string=CRS(proj4string(world.map)))
theInt <- gIntersection(curRPol, curPl, id = wmRN[x])
theInt
})
# Create a SpatialPolygonDataFrame of the western (right) intersections
rSPDF <- SpatialPolygonsDataFrame(SpatialPolygons(unlist(lapply(rPolys,
slot, "polygons")), proj4string = CRS(proj4string(world.map))),
world.map@data)
然后可以根据lSPDF
或rSPDF
的质心在地图上绘制信息:
points(coordinates(rSPDF), col = factor(rSPDF@data$REGION))
# or
text(coordinates(lSPDF), labels = lSPDF@data$FIPS, cex = .7)