我正在运行opencv 2.4.2 C ++。
我正在尝试使用opencv进行人员识别。
我正在使用包含不同方向的不同人员的VidTIMIT数据集。
我正在使用CvSVM对这些人进行分类。
我的问题是svm的输出总是一样的。
我遵循的算法是:
现在,我想知道我是否在培训中做错了什么。
我正在尝试这种方法,考虑5(num_name)人,10(num_images)个不同的图像。
void runFaceDetectionRecognition(vector<Mat_<uchar> > &images){
vector<vector<Rect> > faces;
for (unsigned i=0; i<images.size(); ++i) {
/// detection face
vector<Rect> f;
faceDetection(images[i], f);
if (!f.empty()) {
faces.push_back(f);
/// I keep only the face
Mat_<uchar> roi = ( images[i](f[0]) );
/// resize
resize(roi, roi, Size(58, 58));
roi.copyTo(images[i]);
}
}
/// Set up parameters
CvSVMParams params;
params.svm_type = CvSVM::C_SVC;
params.kernel_type = CvSVM::LINEAR;
params.term_crit = cvTermCriteria(CV_TERMCRIT_ITER, 100, 1e-6);
/// Set up training data
float labels[num_name][num_images];
float label = 0;
/// different label for different person
for (unsigned i=0; i<num_name; ++i) {
for (unsigned j=0; j<num_images; ++j)
labels[i][j] = label;
label++;
}
/// labeling matrix
Mat labelsMat(num_name*num_images, 1, CV_32FC1, labels);
/// unrolling images
float data[images.size()][58*58];
for (unsigned l=0; l<images.size(); ++l)
for (unsigned i=0; i<58; ++i)
for (unsigned j=0; j<58; ++j)
data[l][j+58*i] = images[l].at<float>(i,j);
/// training matrix
Mat train((int) images.size(),58*58, CV_32FC1, data);
CvSVM svm(train, labelsMat, Mat(), Mat(), params);
/// Validation
valSVM(svm, train.rowRange(0, 1));
}
验证码:
void valSVM(CvSVM &svm, Mat train){
/// prediction
float response = svm.predict(train);
cout << "Response ===> " << response << " ";
/// output
if (response == 0) cout << "lea";
else if (response == 1) cout << "maria";
else if (response == 2) cout << "ramona";
else if (response == 3) cout << "teresa";
else if (response == 4) cout << "yan";
}
希望你能帮助我。
答案 0 :(得分:4)
这里的另一个答案是不正确的说SVM必须使用PCA才能运行。我在没有PCA的128x128图像上使用了SVM,取得了很好的效果。我用cohn-kanade数据集做了类似的事情。以下是一些可能有用的源代码。
vector<Mat> preImages;//Fill this with your images from your dataset
vector<int> labels;//Fill this with the labels from the dataset
vector<Mat> images;
CascadeClassifier haar_cascade;
haar_cascade.load("/usr/local/share/OpenCV/haarcascades/haarcascade_frontalface_alt.xml");
vector< Rect_<int> > faces;
Mat procFace;
cout << "images: " << preImages.size() << " labels: " << labels.size() << endl;
for(unsigned int i = 0; i < preImages.size(); i++)
{
procFace = preImages[i].clone();
//haar_cascade.detectMultiScale(procFace, faces);
haar_cascade.detectMultiScale(
procFace,
faces,
1.1,
3,
CASCADE_FIND_BIGGEST_OBJECT|CASCADE_DO_ROUGH_SEARCH,
Size(110, 110)
);
if(faces.size() > 0)
{
// Process face by face:
Rect face_i = faces[0];
// Crop the face from the image.
Mat face = procFace(face_i);
////You can maybe use the equalizeHist function here instead//////
face = illuminationComp(face);
//crop face
Rect cropped(face_i.width*0.18, face_i.height*0.2, int(face_i.width*0.7), int(face_i.height*0.78));
Mat Cface = face(cropped);
Mat face_resized;
resize(Cface, face_resized, Size(128, 128), 1.0, 1.0, INTER_CUBIC);
images.push_back(face_resized);
}
}
//svm parameters:
SVMParams params = SVMParams();
params.svm_type = SVM::C_SVC;
params.kernel_type = SVM::LINEAR;
params.degree = 3.43; // for poly
params.gamma = 0.00225; // for poly / rbf / sigmoid
params.coef0 = 19.6; // for poly / sigmoid
params.C = 0.5; // for CV_SVM_C_SVC , CV_SVM_EPS_SVR and CV_SVM_NU_SVR
params.nu = 0.0; // for CV_SVM_NU_SVC , CV_SVM_ONE_CLASS , and CV_SVM_NU_SVR
params.p = 0.0; // for CV_SVM_EPS_SVR
params.class_weights = NULL; // for CV_SVM_C_SVC
params.term_crit.type = CV_TERMCRIT_ITER | CV_TERMCRIT_EPS;
params.term_crit.max_iter = 1000;
params.term_crit.epsilon = 1e-6;
if(images.size() == labels.size())
{
cout << "Creating SVM Classification" << endl << endl;
int rowsSize = images.size();
int trainingArea = images[0].rows * images[0].cols;
Mat trainingMat = Mat::zeros(rowsSize, trainingArea, CV_32FC1);
int counter;
for(int index = 0; index < rowsSize; index++)
{
counter = 0;
for(int rows = 0; rows < images[0].rows; rows++)
{
for(int cols = 0; cols < images[0].cols; cols++)
{
trainingMat.at<float>(index, counter) = images[index].at<uchar>(rows,cols);
counter++;
}
}
}
Mat matLabels = Mat::zeros(labels.size(),1,CV_32FC1);
for(size_t index = 0; index < labels.size(); index++)
{
matLabels.at<float>(index,0) = float(labels[index]);
}
if(trainingMat.rows == matLabels.rows)
{
SVM svm;
svm.train(trainingMat,matLabels,Mat(),Mat(),params);
svm.save("svm_model.yml");
}
}
答案 1 :(得分:2)
您似乎正在使用完整的58 * 58面部训练您的SVM。为了使SVM工作,您需要使用已包含在OpenCV中的PCA(主成分分析)等方法来减小维度(获取主要组件)。
如果将尺寸从58 * 58阵列缩小到n * n阵列,其中n是主要特征,则SVM的训练将仅使用主要特征,并将导致改进的解决方案。
OpenCV有很多关于人脸识别的文档,你可以开始here。
答案 2 :(得分:0)
我还在构建一个项目,我在其中对一个对象进行分类。我正在使用SVM和Bag of Features(BOf)/ BOW的组合。在这个方法中,首先你创建字典/码本,然后训练你的SVM。结果非常好。