R中的移动方差

时间:2012-11-02 12:39:35

标签: r

我知道R中的filter()函数计算移动平均线。我想知道是否存在一个函数,它返回移动方差或标准偏差,以便与filter()函数的输出并排显示在一个图中。

4 个答案:

答案 0 :(得分:31)

考虑 zoo 包。例如filter()给出:

> filter(1:100, rep(1/3,3))
Time Series:
Start = 1 
End = 100 
Frequency = 1 
  [1] NA  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 [26] 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
 [51] 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
 [76] 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 NA

zoo 中的rollmean()给出:

> rollmean(1:100, k = 3, na.pad = TRUE)
  [1] NA  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 [26] 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
 [51] 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
 [76] 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 NA

是相同的(对于本例中的3点移动平均线)。

虽然动物园没有rollsd()rollvar(),但它确实有rollapply(),其效果与apply()函数相同R函数到指定的窗口。

> rollapply(1:100, width = 3, FUN = sd, na.pad = TRUE)
  [1] NA  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
 [26]  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
 [51]  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
 [76]  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 NA
Warning message:
In rollapply.zoo(zoo(data), ...) : na.pad argument is deprecated

或更有趣的事情:

> rollapply(vec, width = 3, FUN = sd, na.pad = TRUE)
  [1]        NA 0.3655067 0.8472871 0.5660495 0.3491970 0.4732417 0.9236859
  [8] 0.8075226 1.8725851 1.1930784 0.6329325 1.1412416 0.8430772 0.5808005
 [15] 0.3838545 1.1738170 1.1655400 1.3241700 0.6876834 0.1534157 0.4858477
 [22] 0.9843506 0.6002713 0.6897541 2.0619563 2.5675788 6.3522039 6.0066864
 [29] 6.2618432 5.1704866 2.1360853 2.5602557 1.0408528 1.0316396 4.9441628
 [36] 5.0319314 5.7589716 3.2425000 4.8788158 2.0847286 4.5199291 2.5323486
 [43] 2.1987149 1.8393000 1.2278639 1.5998965 1.5341485 4.4287108 4.4159166
 [50] 4.3224546 3.6959067 4.9826264 5.3134044 8.4084322 9.1249234 7.5506725
 [57] 3.8499136 3.9680487 5.6362296 4.9124095 4.3452706 4.0227141 4.5867559
 [64] 4.7350394 4.3203807 4.4506799 7.2759499 7.6536424 7.8487654 2.0905576
 [71] 4.0056880 5.6209853 1.5551659 1.3615268 2.8469458 2.8323588 1.9848578
 [78] 1.1201124 1.4248380 1.7802571 1.4281773 2.5481935 1.8554451 1.0925410
 [85] 2.1823722 2.2788755 2.4205378 2.0733741 0.7462248 1.3873578 1.4265948
 [92] 0.7212619 0.7425993 1.0696432 2.4520585 3.0555819 3.1000885 1.0945292
 [99] 0.3726928        NA
Warning message:
In rollapply.zoo(zoo(data), ...) : na.pad argument is deprecated

您可以使用fill = NA参数删除警告,如

> rollapply(vec, width = 3, FUN = sd, fill = NA)

答案 1 :(得分:19)

TTR套餐包括runSD

> library(TTR)
> ls("package:TTR", pattern="run*")
 [1] "runCor"    "runCov"    "runMAD"    "runMax"    "runMean"  
 [6] "runMedian" "runMin"    "runSD"     "runSum"    "runVar"

runSD将比rollapply快得多,因为它避免了许多R函数调用。例如:

rzoo <- function(x,n) rollapplyr(x, n, sd, fill=NA)
rttr <- function(x,n) runSD(x, n)
library(rbenchmark)
set.seed(21)
x <- rnorm(1e4)
all.equal(rzoo(x,250), rttr(x,250))
# [1] TRUE
benchmark(rzoo(x,250), rttr(x,250))[,1:6]
#           test replications elapsed relative user.self sys.self
# 2 rttr(x, 250)          100    0.58    1.000      0.58     0.00
# 1 rzoo(x, 250)          100   54.53   94.017     53.85     0.06

答案 2 :(得分:14)

rollapply包中的

zoo采用任意函数。它与filter的不同之处在于它默认排除了NA

尽管如此,加载一个函数包并没有多大意义,因为这个函数很容易让自己滚动(双关语)。

这是一个正确的对齐方式:

my.rollapply <- function(vec, width, FUN) 
    sapply(seq_along(vec), 
           function(i) if (i < width) NA else FUN(vec[i:(i-width+1)]))

set.seed(1)
vec <- sample(1:50, 50)
my.rollapply(vec, 3, sd)
 [1]        NA        NA  7.094599 12.124356 16.522712 18.502252 18.193405  7.234178  8.144528
[10] 14.468356 12.489996  3.055050 20.808652 19.467922 18.009257 18.248288 15.695010  7.505553
[19] 10.066446 11.846237 17.156146  6.557439  5.291503 23.629078 22.590558 21.197484 22.810816
[28] 24.433583 19.502137 16.165808 11.503623 12.288206  9.539392 13.051181 13.527749 19.974984
[37] 19.756855 17.616280 19.347696 18.248288 15.176737  6.082763 10.000000 10.016653  4.509250
[46]  2.645751  1.527525  5.291503 10.598742  6.557439

# rollapply output for comparison
rollapply(vec, width=3, sd, fill=NA, align='right')
 [1]        NA        NA  7.094599 12.124356 16.522712 18.502252 18.193405  7.234178  8.144528
[10] 14.468356 12.489996  3.055050 20.808652 19.467922 18.009257 18.248288 15.695010  7.505553
[19] 10.066446 11.846237 17.156146  6.557439  5.291503 23.629078 22.590558 21.197484 22.810816
[28] 24.433583 19.502137 16.165808 11.503623 12.288206  9.539392 13.051181 13.527749 19.974984
[37] 19.756855 17.616280 19.347696 18.248288 15.176737  6.082763 10.000000 10.016653  4.509250
[46]  2.645751  1.527525  5.291503 10.598742  6.557439

答案 3 :(得分:0)

runner软件包中的

runner函数在运行的窗口上应用任何R函数。使用runner可以通过设置长度klag来指定简单窗口。根据OOP在4元素窗口上的建议,将sd移动到下方。

enter image description here

library(runner)

set.seed(1)
x <- rnorm(20, sd = 1)
runner(x, sd, k = 4, na_pad = TRUE)

#[1]        NA        NA        NA 1.1021597 0.9967429 1.1556947 0.9884053 0.6902835 0.7180483 0.4647160
#[11] 0.7454670 0.7489618 0.9449882 1.5821988 1.4459037 1.3889432 1.3954101 0.6193867 0.5296744 0.4266423

要在日期窗口上应用运行功能,应指定idxidx的长度应与x的长度相同,并且应为日期或整数类型。以下示例说明了大小k = 4lag = 1滞后的窗口。在括号中,每个窗口的索引范围。

enter image description here

idx <- c(4, 6, 7, 13, 17, 18, 18, 21, 27, 31, 37, 42, 44, 47, 48)
runner::runner(x = 1:15, 
               k = 5,
               lag = 1,
               idx = idx,
               f = function(x) mean(x))

# [1]   NA  1.0  1.5   NA  4.0  4.5  4.5  6.0   NA  9.0   NA 11.0 12.0 12.5 13.5

documentation and vignettes中的更多信息