我试图在Matlab中制作高斯滤波器而不使用imfilter()
和fspecial()
。
我试过这个,但结果不像imfilter和fspecial那样。
这是我的代码。
function Gaussian_filtered = Gauss(image_x, sigma)
% for single axis
% http://en.wikipedia.org/wiki/Gaussian_filter
Gaussian_filtered = exp(-image_x^2/(2*sigma^2)) / (sigma*sqrt(2*pi));
end
表示2D高斯,
function h = Gaussian2D(hsize, sigma)
n1 = hsize;
n2 = hsize;
for i = 1 : n2
for j = 1 : n1
% size is 10;
% -5<center<5 area is covered.
c = [j-(n1+1)/2 i-(n2+1)/2]';
% A product of both axes is 2D Gaussian filtering
h(i,j) = Gauss(c(1), sigma)*Gauss(c(2), sigma);
end
end
end
,最后一个是
function Filtered = GaussianFilter(ImageData, hsize, sigma)
%Get the result of Gaussian
filter_ = Gaussian2D(hsize, sigma);
%check image
[r, c] = size(ImageData);
Filtered = zeros(r, c);
for i=1:r
for j=1:c
for k=1:hsize
for m=1:hsize
Filtered = Filtered + ImageData(i,j).*filter_(k,m);
end
end
end
end
end
但处理后的图像与输入图像几乎相同。我想知道最后一个函数GaussianFiltered()
是有问题的......
感谢。
答案 0 :(得分:21)
这是另一种选择:
创建2D高斯:
function f=gaussian2d(N,sigma)
% N is grid size, sigma speaks for itself
[x y]=meshgrid(round(-N/2):round(N/2), round(-N/2):round(N/2));
f=exp(-x.^2/(2*sigma^2)-y.^2/(2*sigma^2));
f=f./sum(f(:));
过滤后的图片,给定您的图片称为Im
:
filtered_signal=conv2(Im,gaussian2d(N,sig),'same');
以下是一些情节:
imagesc(gaussian2d(7,2.5))
Im=rand(100);subplot(1,2,1);imagesc(Im)
subplot(1,2,2);imagesc(conv2(Im,gaussian2d(7,2.5),'same'));
答案 1 :(得分:0)
由于for循环,此示例代码很慢。在matlab中,您可以更好地使用conv2,如用户建议:bla,或者只使用filter2。
I = imread('peppers.png'); %load example data
I = I(:,:,1);
N=5; %must be odd
sigma=1;
figure(1);imagesc(I);colormap gray
x=1:N;
X=exp(-(x-((N+1)/2)).^2/(2*sigma^2));
h=X'*X;
h=h./sum(h(:));
%I=filter2(h,I); %this is faster
[is,js]=size(I);
Ib = NaN(is+N-1,js+N-1); %add borders
b=(N-1)/2 +1;
Ib(b:b+is-1,b:b+js-1)=I;
I=zeros(size(I));
for i = 1:is
for j = 1:js
I(i,j)=sum(sum(Ib(i:i+N-1,j:j+N-1).*h,'omitnan'));
end
end
figure(2);imagesc(I);colormap gray