我需要一个谓词路由,它可以在所有城市之间启动&结束。例如:
path(chicago,atlanta).
path(chicago,milwaukee).
path(milwaukee,detroit).
path(milwaukee,newyork).
path(chicago,detroit).
path(detroit, newyork).
path(newyork, boston).
path(atlanta,boston).
path(atlanta, milwaukee).
?- routing(chicago,newyork,X).
X=[chicago,milwaukee,newyork];
X=[chicago,detroit,newyork];
X=[chicago,milwaukee,detroit,newyork];
X=[chicago,atlanta,milwaukee,newyork];
X=[chicago,atlanta,milwaukee,detroit,newyork]
我试过这个,并继续回过头来。
routing(FromCity,ToCity,[FromCity|ToCity]) :-
path(FromCity,ToCity).
routing(FromCity,ToCity,[FromCity|Connections]) :-
path(FromCity,FromConnection),
path(FromConnection,ToConnection),
path(ToConnection,ToCity),
routing(ToConnection,ToCity,Connections).
routing(FromCity,ToCity,[]).
但它只是继续给予
X=[chicago,milwaukee,newyork];
X=[chicago,chicago,newyork];
X=[chicago,chicago,chicago,newyork]
...
..
有人可以指出我正确的方向......
答案 0 :(得分:4)
如果您确定(根据定义)您的图表是非循环的,您可以简化您的规则,利用Prolog深度优先搜索:
routing(FromCity, ToCity, [FromCity, ToCity]) :-
path(FromCity, ToCity).
routing(FromCity, ToCity, [FromCity|Connections]) :-
path(FromCity, ToConnection),
routing(ToConnection, ToCity, Connections).
这可以找到回溯的所有可用路径:
?- routing(chicago,newyork,X).
X = [chicago, atlanta, milwaukee, newyork] ;
X = [chicago, atlanta, milwaukee, detroit, newyork] ;
X = [chicago, milwaukee, newyork] ;
X = [chicago, milwaukee, detroit, newyork] ;
X = [chicago, detroit, newyork] ;
false.
注意列表构造的第一种和第二种模式之间的区别:[FromCity, ToCity]
vs [FromCity|Connections]
。这是因为Connections
将是list
,而ToCity
将成为原子,当规则成功时。
如果图表包含循环,则此代码将循环播放。您可以参考another answer获取处理此问题的简单架构。
答案 1 :(得分:1)
如何进行如下操作?
首先,我们选择一个比path
更好的谓词名称。 edge
怎么样?
edge(chicago , atlanta ).
edge(chicago , milwaukee).
edge(milwaukee, detroit ).
edge(milwaukee, newyork ).
edge(chicago , detroit ).
edge(detroit , newyork ).
edge(newyork , boston ).
edge(atlanta , boston ).
edge(atlanta , milwaukee).
如上所述,edge/2
显然不是symmetric,否则以下查询将无法成功!
?- edge(X, Y), \+ edge(Y, X).
X = chicago , Y = atlanta
; X = chicago , Y = milwaukee
; X = milwaukee, Y = detroit
; X = milwaukee, Y = newyork
; X = chicago , Y = detroit
; X = detroit , Y = newyork
; X = newyork , Y = boston
; X = atlanta , Y = boston
; X = atlanta , Y = milwaukee.
接下来,我们将connected_to/2
定义为edge/2
:
connected_to(X, Y) :- edge(X, Y).
connected_to(X, Y) :- edge(Y, X).
最后,我们将meta-predicate path/4
与connected_to/2
一起使用:
?- path(connected_to, Path, From, To).
; From = To , Path = [To]
; From = chicago, To = atlanta, Path = [chicago,atlanta]
; From = chicago, To = boston , Path = [chicago,atlanta,boston]
; From = chicago, To = newyork, Path = [chicago,atlanta,boston,newyork]
...
那么...... path/4
(connected_to/2
)的最一般查询是否会普遍终止?
?- path(connected_to, Path, From, To), false. false. % terminates universally
最后,让我们计算不同地面路径的总数:
?- setof(P, From^To^(path(connected_to,P,From,To),ground(P)), _Ps),
length(_Ps, N_Ps).
N_Ps = 244.
答案 2 :(得分:0)
这是我的解决方案,适用于定向或无向图,有或没有循环。
它还试图找到所有路径,而无需重新访问。
c(1,2).
% ... c(X,Y) means X and Y are connected
d(X,Y):- c(X,Y).
d(X,Y):- c(Y,X).
% Use d instead of c to allow undirected graphs
findPathHelper(_, Begin, [], End):- d(Begin, End).
findPathHelper(Front, Begin, [Next|NMiddle], End):-
not(member(Begin,Front)),
d(Begin, Next),
append([Front,[Begin]], NFront),
findPathHelper(NFront, Next, NMiddle, End).
findPath(Start, End, Path):-
findPathHelper([], Start, Middle, End),
append([[Start],Middle,[End]], Path).