调整角落并裁剪图像openCV

时间:2012-10-27 07:08:16

标签: iphone objective-c ios image-processing opencv

我在IOS中使用开放式CV。我已经在图像中检测到纸张的边界,如图所示,现在我必须在触摸时拖动这些边界线以调整裁剪框。我们如何调整边界线以及如何在边界内裁剪图像?

这可以在openCV中使用,或者我使用openGL吗?

@moosgummi:我在下面的方法中调用你的方法

- (cv::Mat)finshWork:(cv::Mat &)image
{

Mat img0 =image;

Mat img1;
cvtColor(img0, img1, CV_RGB2GRAY);

// apply your filter
Canny(img1, img1, 100, 200);

// find the contours
vector< vector<cv::Point> > contours;
findContours(img1, contours, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_NONE);


// you could also reuse img1 here
Mat mask = Mat::zeros(img1.rows, img1.cols, CV_8UC1);

// CV_FILLED fills the connected components found
drawContours(mask, contours, -1, Scalar(255), CV_FILLED);


// let's create a new image now
Mat crop(img0.rows, img0.cols, CV_8UC3);

// set background to green
crop.setTo(Scalar(0,255,0));

// and copy the magic apple
img0.copyTo(crop, mask);

// normalize so imwrite(...)/imshow(...) shows the mask correctly!
normalize(mask.clone(), mask, 0.0, 255.0, CV_MINMAX, CV_8UC1);



std::vector<cv::Point> biggestContour = contours[contours.size()-1];

NSLog(@"%d",biggestContour[0].x);
NSLog(@"%d",biggestContour[0].y);

cv::Mat paperImage =[self getPaperAreaFromImage:image:biggestContour];


//return crop;
return paperImage;

}

全部谢谢

enter image description here

2 个答案:

答案 0 :(得分:9)

在你到达角落后,你必须对纸张进行校正并将其“提取”为新图像。

您应该执行以下操作:

  1. 对角点进行排序(顺序很重要;两个向量中的顺序必须相同)
  2. cv::getAffineTransform
  3. cv::warpAffine
  4. 我给自己写了一个辅助函数,它在std::vector中加上四个cv::Point,然后从左上角开始以顺时针顺序对它们进行排序。有关此主题的更多信息,请查看以下主题:

    您应该考虑的另一件事是您要提取的纸张尺寸。在我的例子中,我假设您正在提取DIN A4纸(210x297mm)。您可以在我的代码中编辑paperWidthpaperHeight

    将所有内容组合如下:

    // Helper
    cv::Point getCenter( std::vector<cv::Point> points ) {
    
        cv::Point center = cv::Point( 0.0, 0.0 );
    
        for( size_t i = 0; i < points.size(); i++ ) {
            center.x += points[ i ].x;
            center.y += points[ i ].y;
        }
    
        center.x = center.x / points.size();
        center.y = center.y / points.size();
    
        return center;
    
    }
    
    // Helper;
    // 0----1
    // |    |
    // |    |
    // 3----2
    std::vector<cv::Point> sortSquarePointsClockwise( std::vector<cv::Point> square ) {
    
        cv::Point center = getCenter( square );
    
        std::vector<cv::Point> sorted_square;
        for( size_t i = 0; i < square.size(); i++ ) {
            if ( (square[i].x - center.x) < 0 && (square[i].y - center.y) < 0 ) {
                switch( i ) {
                    case 0:
                        sorted_square = square;
                        break;
                    case 1:
                        sorted_square.push_back( square[1] );
                        sorted_square.push_back( square[2] );
                        sorted_square.push_back( square[3] );
                        sorted_square.push_back( square[0] );
                        break;
                    case 2:
                        sorted_square.push_back( square[2] );
                        sorted_square.push_back( square[3] );
                        sorted_square.push_back( square[0] );
                        sorted_square.push_back( square[1] );
                        break;
                    case 3:
                        sorted_square.push_back( square[3] );
                        sorted_square.push_back( square[0] );
                        sorted_square.push_back( square[1] );
                        sorted_square.push_back( square[2] );
                        break;
                }
                break;
            }
        }
    
        return sorted_square;
    
    }
    
    // Helper
    float distanceBetweenPoints( cv::Point p1, cv::Point p2 ) {
    
        if( p1.x == p2.x ) {
            return abs( p2.y - p1.y );
        }
        else if( p1.y == p2.y ) {
            return abs( p2.x - p1.x );
        }
        else {
            float dx = p2.x - p1.x;
            float dy = p2.y - p1.y;
            return sqrt( (dx*dx)+(dy*dy) );
        }
    }
    
    cv::Mat getPaperAreaFromImage( cv::Mat image, std::vector<cv::Point> square )
    {
    
        // declare used vars
        int paperWidth  = 210; // in mm, because scale factor is taken into account
        int paperHeight = 297; // in mm, because scale factor is taken into account
        cv::Point2f imageVertices[4];
        float distanceP1P2;
        float distanceP1P3;
        BOOL isLandscape = true;
        int scaleFactor;
        cv::Mat paperImage;
        cv::Mat paperImageCorrected;
        cv::Point2f paperVertices[4];
    
        // sort square corners for further operations
        square = sortSquarePointsClockwise( square );
    
        // rearrange to get proper order for getPerspectiveTransform()
        imageVertices[0] = square[0];
        imageVertices[1] = square[1];
        imageVertices[2] = square[3];
        imageVertices[3] = square[2];
    
        // get distance between corner points for further operations
        distanceP1P2 = distanceBetweenPoints( imageVertices[0], imageVertices[1] );
        distanceP1P3 = distanceBetweenPoints( imageVertices[0], imageVertices[2] );
    
        // calc paper, paperVertices; take orientation into account
        if ( distanceP1P2 > distanceP1P3 ) {
            scaleFactor =  ceil( lroundf(distanceP1P2/paperHeight) ); // we always want to scale the image down to maintain the best quality possible
            paperImage = cv::Mat( paperWidth*scaleFactor, paperHeight*scaleFactor, CV_8UC3 );
            paperVertices[0] = cv::Point( 0, 0 );
            paperVertices[1] = cv::Point( paperHeight*scaleFactor, 0 );
            paperVertices[2] = cv::Point( 0, paperWidth*scaleFactor );
            paperVertices[3] = cv::Point( paperHeight*scaleFactor, paperWidth*scaleFactor );
        }
        else {
            isLandscape = false;
            scaleFactor =  ceil( lroundf(distanceP1P3/paperHeight) ); // we always want to scale the image down to maintain the best quality possible
            paperImage = cv::Mat( paperHeight*scaleFactor, paperWidth*scaleFactor, CV_8UC3 );
            paperVertices[0] = cv::Point( 0, 0 );
            paperVertices[1] = cv::Point( paperWidth*scaleFactor, 0 );
            paperVertices[2] = cv::Point( 0, paperHeight*scaleFactor );
            paperVertices[3] = cv::Point( paperWidth*scaleFactor, paperHeight*scaleFactor );
        }
    
        cv::Mat warpMatrix = getPerspectiveTransform( imageVertices, paperVertices );
        cv::warpPerspective(_image, paperImage, warpMatrix, paperImage.size(), cv::INTER_LINEAR, cv::BORDER_CONSTANT );
    
        // we want portrait output
        if ( isLandscape ) {
            cv::transpose(paperImage, paperImageCorrected);
            cv::flip(paperImageCorrected, paperImageCorrected, 1);
            return paperImageCorrected;
        }
    
        return paperImage;
    
    }
    

    <强>用法:

    // ... get paper square ...
    
    cv::Mat paperImage = getPaperAreaFromImage( srcImage, paperSquare );
    

答案 1 :(得分:1)

你应该做的是:

  1. 将找到的4个角和图像的4个实角转移到cv::getPerspectiveTransform。它将为您提供透视变换矩阵,将四边形扭曲为整个图像。

  2. 使用cv::WarpPerspective创建所需的图像。

  3. 链接将带您进入文档。

    编辑:您可以使用cv::findHomography执行第1步。但这更多的是关于拥有大量相应的点和异常值。

    编辑:这是一个例子。它与C接口有关,但您可以轻松地使其与c ++一起使用

    #include <stdio.h>
    #include "highgui.h"
    #include "cv.h"
    
    int main( int argc, char** argv ) {
        // cvLoadImage determines an image type and creates datastructure with appropriate size
        IplImage* img = cvLoadImage( argv[1], CV_LOAD_IMAGE_COLOR);
        IplImage* img1 = cvCreateImage(
                cvSize(img->width, img->height),
                img->depth,
                img->nChannels
                );
    
        cvNamedWindow( "out", CV_WINDOW_AUTOSIZE );
        cvShowImage( "out", img1 );
        // create a window. Window name is determined by a supplied argument
        cvNamedWindow( argv[1], CV_WINDOW_AUTOSIZE );
        // Display an image inside and window. Window name is determined by a supplied argument
        cvShowImage( argv[1], img );
    
        // The part you need
        // Here is the points that you take the image from (the small quadrangle)
        CvPoint2D32f first[4] = {
          {0,0},
          {(img->width /4)* 3, img->height /4    },
          { img->width /4    ,(img->height /4) *3},
          {(img->width /4)* 3,(img->height /4) *3},
        };
        // Here are the points that you draw the quadrangle into (the four corners)
        CvPoint2D32f second[4] = {
          {0,0},
          {img->width,0},
          {0,img->height},
          {img->width,img->height}
        };
        // The part you need
        CvMat *transform = cvCreateMat(3,3, CV_32F);
        cvGetPerspectiveTransform(first,second, transform);
        cvWarpPerspective(img, img1, transform, CV_INTER_LINEAR+CV_WARP_FILL_OUTLIERS,
            cvScalarAll(0));
        // End of part you need
    
        cvShowImage( "out", img1 );
    
    
        // wait indefinitely for keystroke
        cvWaitKey(0);
        // release pointer to an object
        cvReleaseImage( &img );
        // Destroy a window
        cvDestroyWindow( argv[1] );
    }
    

    您应该将数组first替换为您找到的四边形的终点。

    编辑:这是一些样本。我没看好他们。

    Geometric Image Transformations

    cvGetPerspectiveTransform