我使用data.frames有以下代码,我想知道如何使用data.tables,使用最有效,最向量化的代码来编写它?
data.frame代码:
set.seed(1)
to <- cbind(data.frame(time=seq(1:5),bananas=sample(100,5),apples=sample(100,5)),setNames(data.frame(matrix(sample(100,90,replace=T),nrow=5)),paste0(1:18)))
from <- cbind(data.frame(time=seq(1:5),blah=sample(100,5),foo=sample(100,5)),setNames(data.frame(matrix(sample(100,90,replace=T),nrow=5)),paste0(1:18)))
from
to
rownames(to) <- to$time
to[as.character(from$time),paste0(1:18)] <- from[,paste0(1:18)]
to
运行此:
> set.seed(1)
> to <- cbind(data.frame(time=seq(1:5),bananas=sample(100,5),apples=sample(100,5)),setNames(data.frame(matrix(sample(100,90,replace=T),nrow=5)),paste0(1:18)))
> from <- cbind(data.frame(time=seq(1:5),blah=sample(100,5),foo=sample(100,5)),setNames(data.frame(matrix(sample(100,90,replace=T),nrow=5)),paste0(1:18)))
> from
time blah foo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 1 66 22 98 2 100 46 58 60 69 46 62 19 29 42 64 90 30 19 72 60
2 2 35 13 74 72 50 52 8 57 61 18 56 53 90 7 85 65 20 76 39 12
3 3 27 47 36 11 49 21 4 53 24 75 33 8 45 34 86 75 89 73 11 85
4 4 97 90 44 45 18 23 65 99 26 11 46 28 78 73 40 61 51 95 93 32
5 5 61 58 15 65 76 60 93 51 73 87 51 22 89 34 39 91 88 55 29 79
> to
time bananas apples 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 1 27 90 21 50 94 39 49 67 83 79 48 10 92 26 34 90 44 21 24 80
2 2 37 94 18 72 22 2 60 80 65 3 87 32 30 48 84 87 72 72 6 46
3 3 57 65 69 100 66 39 50 11 79 48 44 52 46 77 35 39 40 13 65 42
4 4 89 62 39 39 13 87 19 73 56 74 25 67 34 9 34 78 33 25 88 82
5 5 20 6 77 78 27 35 83 42 53 70 8 41 66 88 48 97 76 15 78 61
>
> rownames(to) <- to$time
> to[as.character(from$time),paste0(1:18)] <- from[,paste0(1:18)]
> to
time bananas apples 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 1 27 90 98 2 100 46 58 60 69 46 62 19 29 42 64 90 30 19 72 60
2 2 37 94 74 72 50 52 8 57 61 18 56 53 90 7 85 65 20 76 39 12
3 3 57 65 36 11 49 21 4 53 24 75 33 8 45 34 86 75 89 73 11 85
4 4 89 62 44 45 18 23 65 99 26 11 46 28 78 73 40 61 51 95 93 32
5 5 20 6 15 65 76 60 93 51 73 87 51 22 89 34 39 91 88 55 29 79
基本上,我们会更新paste0(1:18)
的{{1}}个to
列paste0(1:18)
,与from
匹配。
time
显然有一些优点,例如在控制台上打印时不需要头部,所以我正在考虑使用它们。
但是我不想手工编写data.table
表达式,即尽量避免:
:=
如果可能的话,我也更喜欢使用矢量化语法,而不是某种for循环,即尽量避免使用:
to[from,`1`:=i.`1`,`2`:=i.`2`, ..]
我通读了常见问题小插图和数据表介绍小插图,但我承认我可能还没有完全理解所有内容。
我看了Loop through columns in a data.table and transform those columns,但我不能说我理解它100%,似乎说我需要使用for循环?
在8374816的底部似乎有某种提示可能只使用数据框语法,添加for( i in 1:18 ) {
to[from, sprintf("%d",i) := i.sprintf("%d",i)]
}
?但是由于data.frame过程是对行名称的攻击,我不确定它是否有效/是否有效,我想知道在多大程度上利用了data.table的效率?
答案 0 :(得分:2)
好问题。你已经展示的基础构造:
to[as.character(from$time),paste0(1:18)] <- from[,paste0(1:18)]
假设行名称不能重复,或者如果它们只是第一个匹配的话。这里,<-
的LHS与<-
的RHS具有相同的行数。
data.table
因常规而异,to
中的多行可能匹配; mult
的默认值为"all"
。 data.table
也喜欢长格式到宽格式。因此,这个问题有点让data.table
通过它的步伐来实现它不是真正的设计目标。如果这18列中有任何NA
(即稀疏),那么长格式可能更合适。如果所有18列都是相同类型,那么matrix
可能更合适。
尽管如此,这里有三个data.table
完整性选项。
<强> 1。使用:=
但没有for循环(LHS中多个LHS和多个RHS:= RHS)
from = as.data.table(from)
to = as.data.table(to)
from
time blah foo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1: 1 66 22 98 2 100 46 58 60 69 46 62 19 29 42 64 90 30 19 72 60
2: 2 35 13 74 72 50 52 8 57 61 18 56 53 90 7 85 65 20 76 39 12
3: 3 27 47 36 11 49 21 4 53 24 75 33 8 45 34 86 75 89 73 11 85
4: 4 97 90 44 45 18 23 65 99 26 11 46 28 78 73 40 61 51 95 93 32
5: 5 61 58 15 65 76 60 93 51 73 87 51 22 89 34 39 91 88 55 29 79
to
time bananas apples 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1: 1 27 90 21 50 94 39 49 67 83 79 48 10 92 26 34 90 44 21 24 80
2: 2 37 94 18 72 22 2 60 80 65 3 87 32 30 48 84 87 72 72 6 46
3: 3 57 65 69 100 66 39 50 11 79 48 44 52 46 77 35 39 40 13 65 42
4: 4 89 62 39 39 13 87 19 73 56 74 25 67 34 9 34 78 33 25 88 82
5: 5 20 6 77 78 27 35 83 42 53 70 8 41 66 88 48 97 76 15 78 61
setkey(to,time)
setkey(from,time)
to[from,paste0(1:18):=from[.GRP,paste0(1:18),with=FALSE]]
time bananas apples 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1: 1 27 90 98 2 100 46 58 60 69 46 62 19 29 42 64 90 30 19 72 60
2: 2 37 94 74 72 50 52 8 57 61 18 56 53 90 7 85 65 20 76 39 12
3: 3 57 65 36 11 49 21 4 53 24 75 33 8 45 34 86 75 89 73 11 85
4: 4 89 62 44 45 18 23 65 99 26 11 46 28 78 73 40 61 51 95 93 32
5: 5 20 6 15 65 76 60 93 51 73 87 51 22 89 34 39 91 88 55 29 79
或强>
to[from,paste0(1:18):=from[,paste0(1:18),with=FALSE],mult="first"]
time bananas apples 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1: 1 27 90 98 2 100 46 58 60 69 46 62 19 29 42 64 90 30 19 72 60
2: 2 37 94 74 72 50 52 8 57 61 18 56 53 90 7 85 65 20 76 39 12
3: 3 57 65 36 11 49 21 4 53 24 75 33 8 45 34 86 75 89 73 11 85
4: 4 89 62 44 45 18 23 65 99 26 11 46 28 78 73 40 61 51 95 93 32
5: 5 20 6 15 65 76 60 93 51 73 87 51 22 89 34 39 91 88 55 29 79
注意我正在使用最新的v1.8.3,这是选项1工作所必需的(刚刚添加了.GRP
,并且不再需要外部with=FALSE
)。
<强> 2。使用一个列表列来存储长度为18的向量,而不是18列
to = data.table( time=seq(1:5),
bananas=sample(100,5),
apples=sample(100,5),
v18=replicate(5,sample(100,18),simplify=FALSE))
from = data.table( time=seq(1:5),
blah=sample(100,5),
foo=sample(100,5),
v18=replicate(5,sample(100,18),simplify=FALSE))
setkey(to,time)
setkey(from,time)
from
time blah foo v18
1: 1 56 97 88,47,1,71,69,18,
2: 2 69 40 96,99,60,3,33,27,
3: 3 65 84 100,38,56,72,84,55,
4: 4 98 74 91,69,24,63,27,100,
5: 5 46 52 65,4,59,41,8,51,
to
time bananas apples v18
1: 1 66 73 100,36,74,77,68,46,
2: 2 19 37 84,88,92,8,37,52,
3: 3 94 77 37,94,13,7,93,43,
4: 4 88 2 27,93,71,16,46,66,
5: 5 91 91 85,94,58,49,19,1,
to[from,v18:=i.v18]
to
time bananas apples v18
1: 1 66 73 88,47,1,71,69,18,
2: 2 19 37 96,99,60,3,33,27,
3: 3 94 77 100,38,56,72,84,55,
4: 4 88 2 91,69,24,63,27,100,
5: 5 91 91 65,4,59,41,8,51,
如果您不习惯列出列打印,则尾随逗号表示该向量中有更多项目。只打印了前6个。
第3。在data.frame
data.table
语法
to = as.data.table(to)
from = as.data.table(from)
setkey(to,time)
setkey(from,time)
from
time blah foo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1: 1 66 22 98 2 100 46 58 60 69 46 62 19 29 42 64 90 30 19 72 60
2: 2 35 13 74 72 50 52 8 57 61 18 56 53 90 7 85 65 20 76 39 12
3: 3 27 47 36 11 49 21 4 53 24 75 33 8 45 34 86 75 89 73 11 85
4: 4 97 90 44 45 18 23 65 99 26 11 46 28 78 73 40 61 51 95 93 32
5: 5 61 58 15 65 76 60 93 51 73 87 51 22 89 34 39 91 88 55 29 79
to
time bananas apples 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1: 1 27 90 21 50 94 39 49 67 83 79 48 10 92 26 34 90 44 21 24 80
2: 2 37 94 18 72 22 2 60 80 65 3 87 32 30 48 84 87 72 72 6 46
3: 3 57 65 69 100 66 39 50 11 79 48 44 52 46 77 35 39 40 13 65 42
4: 4 89 62 39 39 13 87 19 73 56 74 25 67 34 9 34 78 33 25 88 82
5: 5 20 6 77 78 27 35 83 42 53 70 8 41 66 88 48 97 76 15 78 61
to[from, paste0(1:18)] <- from[,paste0(1:18),with=FALSE]
to
time bananas apples 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1: 1 27 90 98 2 100 46 58 60 69 46 62 19 29 42 64 90 30 19 72 60
2: 2 37 94 74 72 50 52 8 57 61 18 56 53 90 7 85 65 20 76 39 12
3: 3 57 65 36 11 49 21 4 53 24 75 33 8 45 34 86 75 89 73 11 85
4: 4 89 62 44 45 18 23 65 99 26 11 46 28 78 73 40 61 51 95 93 32
5: 5 20 6 15 65 76 60 93 51 73 87 51 22 89 34 39 91 88 55 29 79
因此<-
的LHS可以使用data.table
键控连接语法;即to[from]
。只是这个方法(目前在R中)将复制整个 to
数据集。这就是:=
引入的内容,以避免通过引用提供更新。另外,如果from
中的每一行都与to
中的多行匹配,则<-
的RHS需要扩展为排队(由用户提供),否则RHS将被回收填写LHS。这就是为什么data.table
我们希望:=
位于j
内,[...]
内的所有内容的原因之一。