具有NLTK的半监督朴素贝叶斯

时间:2012-10-23 13:55:21

标签: python machine-learning nltk naivebayes unsupervised-learning

我基于EM(期望最大化算法)在Python中构建了一个半监督版的NLTK Naive Bayes。然而,在EM的一些迭代中,我得到负的对数似然(EM的对数似然性在每次迭代中必须是正的),因此我相信我的代码中肯定会有一些错误。仔细检查我的代码后,我不知道为什么会这样。如果有人能够在我的代码中发现任何错误,我们将非常感激:

Reference material of semi-supervised Naive Bayes

EM-algorithm主循环

#initial assumptions:
#Bernoulli NB: only feature presence (value 1) or absence (value None) is computed 

#initial data:
#C: classifier trained with labeled data
#labeled_data: an array of tuples (feature dic, label)
#features: dictionary that outputs feature dictionary for a given document id  

for iteration in range(1, self.maxiter):    

  #Expectation: compute probabilities for each class for each unlabeled document
  #An array of tuples (feature dictionary, probability dist) is built       
  unlabeled_data = [(features[id],C.prob_classify(features[id])) for id in U]

  #Maximization: given the probability distributions of previous step,
  #update label, feature-label counts and update classifier C
  #gen_freqdists is a custom function, see below
  #gen_probdists is the original NLTK function
  l_freqdist_act,ft_freqdist_act, ft_values_act = self.gen_freqdists(labeled_data,unlabeled_data)
  l_probdist_act, ft_probdist_act = self.gen_probdists(l_freqdist_act, ft_freqdist_act, ft_values_act, ELEProbDist)
  C = nltk.NaiveBayesClassifier(l_probdist_act, ft_probdist_act)                    

  #Compute log-likelihood 
  #NLTK Naive bayes classifier prob_classify func gives logprob(class) + logprob(doc|class))
  #for labeled data, sum logprobs output by the classifier for the label
  #for unlabeled data, sum logprobs output by the classifier for each label
  log_lh = sum([C.prob_classify(ftdic).prob(label) for (ftdic,label) in labeled_data])      
  log_lh += sum([C.prob_classify(ftdic).prob(label) for (ftdic,ignore) in unlabeled_data for label in l_freqdist_act.samples()])

  #Continue until convergence               
  if log_lh_old == "first": 
    if self.debug: print "\tM: #iteration 1",log_lh,"(FIRST)"
    log_lh_old =  log_lh            
  else:
    log_lh_diff = log_lh - log_lh_old
    if self.debug: print "\tM: #iteration",iteration,log_lh_old,"->",log_lh,"(",log_lh_diff,")"
    if log_lh_diff < self.log_lh_diff_min: break        
    log_lh_old =  log_lh

自定义函数gen-freqdists,用于创建所需的频率分布

def gen_freqdists(self, instances_l, instances_ul):     
    l_freqdist = FreqDist() #frequency distrib. of labels
    ft_freqdist= defaultdict(FreqDist) #dictionary of freq. distrib. for ft-label pairs
    ft_values = defaultdict(set) #dictionary of possible values for each ft (only 1/None)
    fts = set() #set of all fts

    #counts for labeled data
    for (ftdic,label) in instances_l:
      l_freqdist.inc(label,1)
      for f in ftdic.keys():
        fts.add(f) 
        ft_freqdist[label,f].inc(1,1)
        ft_values[f].add(1)

    #counts for unlabeled data
    #we must compute maximum a posteriori label estimate
    #and update label/ft occurrences accordingly
    for (ftdic,probs) in instances_ul:
      map_l = probs.max() #label with highest probability
      map_p = probs.prob(map_l) #probability of map_l
      l_freqdist.inc(map_l,count=map_p)
      for f in ftdic.keys():
        fts.add(f)
        ft_freqdist[map_l,f].inc(1,count=map_p)             
        ft_values[f].add(1)

    #features not appearing in documents get implicit None values
    for l in l_freqdist.samples():
    num_samples = l_freqdist[l] 
    for f in fts:
      count = ft_freqdist[l,f].N()              
      ft_freqdist[l,f].inc(None, num_samples-count)
      ft_values[f].add(None)    

    #return computed frequency distributions
    return l_freqdist, ft_freqdist, ft_values   

1 个答案:

答案 0 :(得分:3)

我认为你总结了错误的价值观。

这是你的代码,它应该计算log probs的总和:

  #Compute log-likelihood 
  #NLTK Naive bayes classifier prob_classify func gives logprob(class) + logprob(doc|class))
  #for labeled data, sum logprobs output by the classifier for the label
  #for unlabeled data, sum logprobs output by the classifier for each label

  log_lh = sum([C.prob_classify(ftdic).prob(label) for (ftdic,label) in labeled_data])
  log_lh += sum([C.prob_classify(ftdic).prob(label) for (ftdic,ignore) in unlabeled_data for label in l_freqdist_act.samples()])

根据prob_classify的NLTK文档(在NaiveBayesClassifier上),返回ProbDistI对象( logprob(class) + logprob(doc|class))。当你得到这个对象时,你正在为它给出一个给定标签的prob方法。您可能想要调用logprob,并否定该返回。