Weka中单个实例的分类

时间:2012-10-23 11:07:36

标签: machine-learning classification weka prediction decision-tree

我使用WEKA gui训练并创建了一个J48模型。我将模型文件保存到我的计算机上,现在我想用它来分类我的Java代码中的单个实例。我想预测属性" cluster"。我的工作如下:

public void classify(double lat, double lon, double co)
{            

// Create attributes to be used with classifiers
                    Attribute latitude = new Attribute("latitude");
                    Attribute longitude = new Attribute("longitude");
                    Attribute carbonmonoxide = new Attribute("co");

                    // Create instances for each pollutant with attribute values latitude, longitude and pollutant itself
                    inst_co = new DenseInstance(4);

                    // Set instance's values for the attributes "latitude", "longitude", and "pollutant concentration"
                    inst_co.setValue(latitude, lat);
                    inst_co.setValue(longitude, lon);
                    inst_co.setValue(carbonmonoxide, co);
                    inst_co.setMissing(cluster);


    Classifier cls_co = (Classifier) weka.core.SerializationHelper.read("/CO_J48Model.model");//load classifier from file

                    // Test the model
        double result = cls_co.classifyInstance(inst_co);
}

但是,我在行inst_co.setValue(latitude, lat);上得到一个IndexArrayOutofBoundsException。我找不到这个例外的原因。如果有人能指出我正确的方向,我将不胜感激。

2 个答案:

答案 0 :(得分:8)

您需要将inst_co添加到数据集,Instances对象。以下代码应该可以工作。

import java.util.ArrayList;

import weka.classifiers.Classifier;
import weka.core.Attribute;
import weka.core.DenseInstance;
import weka.core.Instance;
import weka.core.Instances;

public class QuestionInstanceClassifiy {

    public static void main(String[] args) {
        QuestionInstanceClassifiy q = new QuestionInstanceClassifiy();
        double result = q.classify(1.0d, 1, 1);
        System.out.println(result);
    }

    private Instance inst_co;

    public double classify(double lat, double lon, double co)  {

        // Create attributes to be used with classifiers
        // Test the model
        double result = -1;
        try {

            ArrayList<Attribute> attributeList = new ArrayList<Attribute>(2);

            Attribute latitude = new Attribute("latitude");
            Attribute longitude = new Attribute("longitude");
            Attribute carbonmonoxide = new Attribute("co");

            ArrayList<String> classVal = new ArrayList<String>();
            classVal.add("ClassA");
            classVal.add("ClassB");


            attributeList.add(latitude);
            attributeList.add(longitude);
            attributeList.add(carbonmonoxide);
            attributeList.add(new Attribute("@@class@@",classVal));

            Instances data = new Instances("TestInstances",attributeList,0);


            // Create instances for each pollutant with attribute values latitude,
            // longitude and pollutant itself
            inst_co = new DenseInstance(data.numAttributes());
            data.add(inst_co);

            // Set instance's values for the attributes "latitude", "longitude", and
            // "pollutant concentration"
            inst_co.setValue(latitude, lat);
            inst_co.setValue(longitude, lon);
            inst_co.setValue(carbonmonoxide, co);
            // inst_co.setMissing(cluster);

            // load classifier from file
            Classifier cls_co = (Classifier) weka.core.SerializationHelper
                    .read("/CO_J48Model.model");

            result = cls_co.classifyInstance(inst_co);
        } catch (Exception e) {
            // TODO Auto-generated catch block
            e.printStackTrace();
        }
        return result;
    }
}

您可以从Instances创建数据对象。将您的实例添加到此数据中。之后,您可以在实例中设置值。

Instances data = new Instances("TestInstances",attributeList,0);
inst_co = new DenseInstance(data.numAttributes());
data.add(inst_co);

我建议从外部文件中获取标题信息和实例值,或仅创建此信息一次。

答案 1 :(得分:3)

实际上我试过在我的情况下调用instance.setDataSet()方法,而不是addInstance方法。所以你的代码应该是 inst_co.setDataSet(data)。