这个问题非常相关,但已有2年了:In memory OLAP engine in Java
我想从内存
中的给定表格数据集创建一个类似于数据集的数据库e.g。按婚姻状况计算的年龄(行数为年龄,列为婚姻状况)。
输入:人员列表,包含年龄和一些布尔属性(例如已婚),
所需的输出:人数,按年龄(行)和isMarried(列)
case class Person(val age:Int, val isMarried:Boolean)
...
val people:List[Person] = ... //
val peopleByAge = people.groupBy(_.age) //only by age
val peopleByMaritalStatus = people.groupBy(_.isMarried) //only by marital status
我设法以天真的方式进行,首先按年龄分组,然后map
根据婚姻状况进行count
,然后输出结果,然后我foldRight
汇总
TreeMap(peopleByAge.toSeq: _*).map(x => {
val age = x._1
val rows = x._2
val numMarried = rows.count(_.isMarried())
val numNotMarried = rows.length - numMarried
(age, numMarried, numNotMarried)
}).foldRight(List[FinalResult]())(row,list) => {
val cumMarried = row._2+
(if (list.isEmpty) 0 else list.last.cumMarried)
val cumNotMarried = row._3 +
(if (list.isEmpty) 0 else l.last.cumNotMarried)
list :+ new FinalResult(row._1, row._2, row._3, cumMarried,cumNotMarried)
}.reverse
我不喜欢上面的代码,它不高效,难以阅读,而且我确信有更好的方法。
我如何分组“两个”?以及如何对每个子组进行计数,例如
有多少人正好30岁并且结婚了?
另一个问题是,如何回答问题:
30岁以上的人中有多少人结婚了?
修改
谢谢你们所有的好答案。
只是为了澄清,我希望输出包含一个带有以下列的“表”
不仅要回答这些特定的问题,还要制作一份能够回答所有此类问题的报告。
答案 0 :(得分:4)
你可以
val groups = people.groupBy(p => (p.age, p.isMarried))
然后
val thirty_and_married = groups((30, true))._2
val over_thirty_and_married_count =
groups.filterKeys(k => k._1 > 30 && k._2).map(_._2.length).sum
答案 1 :(得分:4)
这是一个更冗长的选项,但是它以通用方式执行,而不是使用严格的数据类型。你当然可以使用泛型来使这个更好,但我认为你明白了。
/** Creates a new pivot structure by finding correlated values
* and performing an operation on these values
*
* @param accuOp the accumulator function (e.g. sum, max, etc)
* @param xCol the "x" axis column
* @param yCol the "y" axis column
* @param accuCol the column to collect and perform accuOp on
* @return a new Pivot instance that has been transformed with the accuOp function
*/
def doPivot(accuOp: List[String] => String)(xCol: String, yCol: String, accuCol: String) = {
// create list of indexes that correlate to x, y, accuCol
val colsIdx = List(xCol, yCol, accuCol).map(headers.getOrElse(_, 1))
// group by x and y, sending the resulting collection of
// accumulated values to the accuOp function for post-processing
val data = body.groupBy(row => {
(row(colsIdx(0)), row(colsIdx(1)))
}).map(g => {
(g._1, accuOp(g._2.map(_(colsIdx(2)))))
}).toMap
// get distinct axis values
val xAxis = data.map(g => {g._1._1}).toList.distinct
val yAxis = data.map(g => {g._1._2}).toList.distinct
// create result matrix
val newRows = yAxis.map(y => {
xAxis.map(x => {
data.getOrElse((x,y), "")
})
})
// collect it with axis labels for results
Pivot(List((yCol + "/" + xCol) +: xAxis) :::
newRows.zip(yAxis).map(x=> {x._2 +: x._1}))
}
我的Pivot类型非常基本:
class Pivot(val rows: List[List[String]]) {
val headers = rows.head.zipWithIndex.toMap
val body = rows.tail
...
}
为了测试它,你可以这样做:
val marriedP = Pivot(
List(
List("Name", "Age", "Married"),
List("Bill", "42", "TRUE"),
List("Heloise", "47", "TRUE"),
List("Thelma", "34", "FALSE"),
List("Bridget", "47", "TRUE"),
List("Robert", "42", "FALSE"),
List("Eddie", "42", "TRUE")
)
)
def accum(values: List[String]) = {
values.map(x => {1}).sum.toString
}
println(marriedP + "\n")
println(marriedP.doPivot(accum)("Age", "Married", "Married"))
哪个收益率:
Name Age Married
Bill 42 TRUE
Heloise 47 TRUE
Thelma 34 FALSE
Bridget 47 TRUE
Robert 42 FALSE
Eddie 42 TRUE
Married/Age 47 42 34
TRUE 2 2
FALSE 1 1
好处是你可以使用currying传递值的任何函数,就像传统的excel数据透视表一样。
更多信息可以在这里找到:https://github.com/vinsonizer/pivotfun
答案 2 :(得分:1)
我认为最好直接在count
s上使用List
方法
问题1
people.count { p => p.age == 30 && p.isMarried }
问题2
people.count { p => p.age > 30 && p.isMarried }
如果您还想要符合这些谓词的实际人群使用过滤器。
people.filter { p => p.age > 30 && p.isMarried }
您可以通过仅进行一次遍历来优化这些,但这是一项要求吗?
答案 3 :(得分:1)
您可以使用元组进行分组:
val res1 = people.groupBy(p => (p.age, p.isMarried)) //or
val res2 = people.groupBy(p => (p.age, p.isMarried)).mapValues(_.size) //if you dont care about People instances
您可以回答这两个问题:
res2.getOrElse((30, true), 0)
res2.filter{case (k, _) => k._1 > 30 && k._2}.values.sum
res2.filterKeys(k => k._1 > 30 && k._2).values.sum // nicer with filterKeys from Rex Kerr's answer
您可以使用列表中的方法计数回答这两个问题:
people.count(p => p.age == 30 && p.isMarried)
people.count(p => p.age > 30 && p.isMarried)
或使用过滤器和尺寸:
people.filter(p => p.age == 30 && p.isMarried).size
people.filter(p => p.age > 30 && p.isMarried).size
编辑: 稍微清洁的代码版本:
TreeMap(peopleByAge.toSeq: _*).map {case (age, ps) =>
val (married, notMarried) = ps.span(_.isMarried)
(age, married.size, notMarried.size)
}.foldLeft(List[FinalResult]()) { case (acc, (age, married, notMarried)) =>
def prevValue(f: (FinalResult) => Int) = acc.headOption.map(f).getOrElse(0)
new FinalResult(age, married, notMarried, prevValue(_.cumMarried) + married, prevValue(_.cumNotMarried) + notMarried) :: acc
}.reverse