Java / Scala中的内存olap / pivot表中是否有数据结构/库?

时间:2012-10-19 18:11:44

标签: scala data-structures olap

相关问题

这个问题非常相关,但已有2年了:In memory OLAP engine in Java

背景

我想从内存

中的给定表格数据集创建一个类似于数据集的数据库

e.g。按婚姻状况计算的年龄(行数为年龄,列为婚姻状况)。

  • 输入:人员列表,包含年龄和一些布尔属性(例如已婚),

  • 所需的输出:人数,按年龄(行)和isMarried(列)

我尝试过的(Scala)

case class Person(val age:Int, val isMarried:Boolean)

...
val people:List[Person] = ... //

val peopleByAge = people.groupBy(_.age)  //only by age
val peopleByMaritalStatus = people.groupBy(_.isMarried) //only by marital status

我设法以天真的方式进行,首先按年龄分组,然后map根据婚姻状况进行count,然后输出结果,然后我foldRight汇总

TreeMap(peopleByAge.toSeq: _*).map(x => {
    val age = x._1
    val rows = x._2
    val numMarried = rows.count(_.isMarried())
    val numNotMarried = rows.length - numMarried
    (age, numMarried, numNotMarried)
}).foldRight(List[FinalResult]())(row,list) => {
     val cumMarried = row._2+ 
        (if (list.isEmpty) 0 else list.last.cumMarried) 
     val cumNotMarried = row._3 + 
        (if (list.isEmpty) 0 else l.last.cumNotMarried) 
     list :+ new FinalResult(row._1, row._2, row._3, cumMarried,cumNotMarried) 
}.reverse

我不喜欢上面的代码,它不高效,难以阅读,而且我确信有更好的方法。

问题

我如何分组“两个”?以及如何对每个子组进行计数,例如

  

有多少人正好30岁并且结婚了?

另一个问题是,如何回答问题:

  

30岁以上的人中有多少人结婚了?


修改

谢谢你们所有的好答案。

只是为了澄清,我希望输出包含一个带有以下列的“表”

  • 年龄(升序)
  • Num Married
  • Num Not Married
  • 结婚总数
  • 未婚未婚

不仅要回答这些特定的问题,还要制作一份能够回答所有此类问题的报告。

4 个答案:

答案 0 :(得分:4)

你可以

val groups = people.groupBy(p => (p.age, p.isMarried))

然后

val thirty_and_married = groups((30, true))._2
val over_thirty_and_married_count = 
  groups.filterKeys(k => k._1 > 30 && k._2).map(_._2.length).sum

答案 1 :(得分:4)

这是一个更冗长的选项,但是它以通用方式执行,而不是使用严格的数据类型。你当然可以使用泛型来使这个更好,但我认为你明白了。

/** Creates a new pivot structure by finding correlated values 
  * and performing an operation on these values
  *
  * @param accuOp the accumulator function (e.g. sum, max, etc)
  * @param xCol the "x" axis column
  * @param yCol the "y" axis column
  * @param accuCol the column to collect and perform accuOp on
  * @return a new Pivot instance that has been transformed with the accuOp function
  */
def doPivot(accuOp: List[String] => String)(xCol: String, yCol: String, accuCol: String) = {
  // create list of indexes that correlate to x, y, accuCol
  val colsIdx = List(xCol, yCol, accuCol).map(headers.getOrElse(_, 1))

  // group by x and y, sending the resulting collection of
  // accumulated values to the accuOp function for post-processing
  val data = body.groupBy(row => {
    (row(colsIdx(0)), row(colsIdx(1)))
  }).map(g => {
    (g._1, accuOp(g._2.map(_(colsIdx(2)))))
  }).toMap

  // get distinct axis values
  val xAxis = data.map(g => {g._1._1}).toList.distinct
  val yAxis = data.map(g => {g._1._2}).toList.distinct

  // create result matrix
  val newRows = yAxis.map(y => {
    xAxis.map(x => {
      data.getOrElse((x,y), "")
    })
  })

 // collect it with axis labels for results
 Pivot(List((yCol + "/" + xCol) +: xAxis) :::
   newRows.zip(yAxis).map(x=> {x._2 +: x._1}))
}

我的Pivot类型非常基本:

class Pivot(val rows: List[List[String]]) {

  val headers = rows.head.zipWithIndex.toMap
  val body    = rows.tail
  ...
}

为了测试它,你可以这样做:

val marriedP = Pivot(
  List(
    List("Name", "Age", "Married"),
    List("Bill", "42", "TRUE"),
    List("Heloise", "47", "TRUE"),
    List("Thelma", "34", "FALSE"),
    List("Bridget", "47", "TRUE"),
    List("Robert", "42", "FALSE"),
    List("Eddie", "42", "TRUE")

  )
)

def accum(values: List[String]) = {
    values.map(x => {1}).sum.toString
}
println(marriedP + "\n")
println(marriedP.doPivot(accum)("Age", "Married", "Married"))

哪个收益率:

Name     Age      Married  
Bill     42       TRUE     
Heloise  47       TRUE     
Thelma   34       FALSE    
Bridget  47       TRUE     
Robert   42       FALSE    
Eddie    42       TRUE     

Married/Age  47           42           34           
TRUE         2            2                         
FALSE                     1            1 

好处是你可以使用currying传递值的任何函数,就像传统的excel数据透视表一样。

更多信息可以在这里找到:https://github.com/vinsonizer/pivotfun

答案 2 :(得分:1)

我认为最好直接在count s上使用List方法

问题1

people.count { p => p.age == 30 && p.isMarried }

问题2

people.count { p => p.age > 30 && p.isMarried }

如果您还想要符合这些谓词的实际人群使用过滤器。

people.filter { p => p.age > 30 && p.isMarried }

您可以通过仅进行一次遍历来优化这些,但这是一项要求吗?

答案 3 :(得分:1)

您可以使用元组进行分组:

val res1 = people.groupBy(p => (p.age, p.isMarried)) //or
val res2 = people.groupBy(p => (p.age, p.isMarried)).mapValues(_.size) //if you dont care about People instances

您可以回答这两个问题:

res2.getOrElse((30, true), 0)
res2.filter{case (k, _) => k._1 > 30 && k._2}.values.sum
res2.filterKeys(k => k._1 > 30 && k._2).values.sum // nicer with filterKeys from Rex Kerr's answer

您可以使用列表中的方法计数回答这两个问题:

people.count(p => p.age == 30 && p.isMarried)
people.count(p => p.age > 30 && p.isMarried)

或使用过滤器和尺寸:

people.filter(p => p.age == 30 && p.isMarried).size
people.filter(p => p.age > 30 && p.isMarried).size

编辑: 稍微清洁的代码版本:

TreeMap(peopleByAge.toSeq: _*).map {case (age, ps) =>
    val (married, notMarried) = ps.span(_.isMarried)
    (age, married.size, notMarried.size)
  }.foldLeft(List[FinalResult]()) { case (acc, (age, married, notMarried)) =>
    def prevValue(f: (FinalResult) => Int) = acc.headOption.map(f).getOrElse(0)
    new FinalResult(age, married, notMarried, prevValue(_.cumMarried) + married, prevValue(_.cumNotMarried) + notMarried) :: acc
  }.reverse