为什么我的列表理解不起作用?我尝试在矩阵中缩放随机数。它作为lambda函数工作,但不作为列表理解。我做错了什么?
import numpy as np
import pylab as pl
def RandomSource(N,x0,x1,y0,y1,c0,c1):
randSources = np.random.random((N,3))
# print to double-check agruments of the function
print 'This are scaling values %s %s %s %s %s %s %s' % (N,x0,x1,y0,y1,c0,c1)
# below should scale a whole matrix
[x0 + x*(x1-x0) for x in randSources[:,0]]
[y0 + y*(y1-y0) for y in randSources[:,1]]
[c0 + c*(c1-c0) for c in randSources[:,2]]
return randSources
xS = 10
yS = -100
cS = 5
N = 1000
newPoints = RandomSource(N,xS-5,xS+5,yS-3,yS+2,cS-1,cS+2)
print type(newPoints)
print 'newPoints x = %s' % newPoints[0,0]
print '\nnewPoints = %s\nnewX = %s \nnewY = %s' % (newPoints[0:10], newPoints[0:10,0], newPoints[0:10,1])
pl.scatter(newPoints[:,0], newPoints[:,1], s=20, c=newPoints[:,2], marker = 'x' )
pl.show()
输出:
newPoints = [[ 0.34890398 0.65918009 0.8198278 ]
[ 0.47497993 0.98015398 0.23980164]
[ 0.86359112 0.10184741 0.24804018]]
但是期望类似:
newPoints = [[ 6.4124458 -99.77854982 5.60905745]
[ 9.04459454 -99.63120435 4.08184828]
[ 14.94181747 -98.50800397 4.95530916]]
答案 0 :(得分:4)
列表理解不会改变列表;它创建了一个全新的列表。您必须分配理解结果才能存储结果:
def RandomSource(N,x0,x1,y0,y1,c0,c1):
randSources = np.random.random((N,3))
# print to double-check agruments of the function
print 'This are scaling values %s %s %s %s %s %s %s' % (N,x0,x1,y0,y1,c0,c1)
# below should scale a whole matrix
#[x0 + x*(x1-x0) for x in randSources[:,0]]
randSources[:,0] = map(lambda x: x0 + x*(x1-x0), randSources[:,0])
randSources[:,1] = [y0 + y*(y1-y0) for y in randSources[:,1]]
randSources[:,2] = [c0 + c*(c1-c0) for c in randSources[:,2]]
return randSources
注意:我不确定该作业是否有效(randSources[:,1] = ...
),但这是一般的想法。一个更简单的例子:
>>> l = [1, 2, 3, 4, 5]
>>> [i*2 for i in l]
[2, 4, 6, 8, 10]
>>> l
[1, 2, 3, 4, 5]
>>> l = [i*2 for i in l]
>>> l
[2, 4, 6, 8, 10]