我写了一个脚本,我读了大约400万点和800.000块。该脚本会剪切每个绘图中的点,并为每个绘图保存一个新的文本文件。
经过一段时间后,我的电脑内存已满。我曾尝试在我的脚本中挖掘,但在每个循环for i in xrange(len(sr)):
中,每个对象都被替换,并且剪切的点保存在新的txt文件中。
在这种情况下是否有一些策略可以在不降低性能的情况下提高内存使用率(脚本已经很慢)?我是python的初学者,对不起,如果问题很简单。
提前致谢 詹尼
inFile ="C://04-las_clip_inside_area//prova//Ku_115_class_Notground_normalize.las"
poly ="C://04-las_clip_inside_area//prova//ku_115_plot_clip.shp"
chunkSize = None
MinPoints = 1
sf = shapefile.Reader(poly) #open shpfile
sr = sf.shapeRecords()
poly_filename, ext = path.splitext(poly)
inFile_filename = os.path.splitext(os.path.basename(inFile))[0]
pbar = ProgressBar(len(sr)) # set progressbar
if chunkSize == None:
points = [(p.x,p.y) for p in lasfile.File(inFile,None,'r')]
for i in xrange(len(sr)):
pbar.update(i+1) # progressbar
verts = np.array(sr[i].shape.points,float)
record = sr[i].record[0]
index = nonzero(points_inside_poly(points, verts))[0]
if len(index) >= MinPoints:
file_out = open("{0}_{1}_{2}.txt".format(poly_filename, inFile_filename, record), "w")
inside_points = [lasfile.File(inFile,None,'r')[l] for l in index]
for p in inside_points:
file_out.write("%s %s %s %s %s %s %s %s %s %s %s" % (p.x, p.y, p.z, p.intensity,p.return_number,p.number_of_returns,p.scan_direction,p.flightline_edge,p.classification,p.scan_angle,record)+ "\n")
file_out.close()
这是原始功能
def LAS2TXTClipSplitbyChunk(inFile,poly,chunkSize=1,MinPoints=1):
sf = shapefile.Reader(poly) #open shpfile
sr = sf.shapeRecords()
poly_filename, ext = path.splitext(poly)
inFile_filename = os.path.splitext(os.path.basename(inFile))[0]
pbar = ProgressBar(len(sr)) # set progressbar
if chunkSize == None:
points = [(p.x,p.y) for p in lasfile.File(inFile,None,'r')]
for i in xrange(len(sr)):
pbar.update(i+1) # progressbar
verts = np.array(sr[i].shape.points,float)
record = sr[i].record[0]
index = nonzero(points_inside_poly(points, verts))[0]
if len(index) >= MinPoints:
file_out = open("{0}_{1}_{2}.txt".format(poly_filename, inFile_filename, record), "w")
inside_points = [lasfile.File(inFile,None,'r')[l] for l in index]
for p in inside_points:
file_out.write("%s %s %s %s %s %s %s %s %s %s %s" % (p.x, p.y, p.z, p.intensity,p.return_number,p.number_of_returns,p.scan_direction,p.flightline_edge,p.classification,p.scan_angle,record)+ "\n")
file_out.close()
else:
for i in xrange(len(sr)):
pbar.update(i+1) # progressbar
verts = np.array(sr[i].shape.points,float)
record = sr[i].record[0]
f = lasfile.File(inFile,None,'r')
file_out = open("{0}_{1}_{2}.txt".format(poly_filename, inFile_filename, record), "w")
TotPoints = 0
while True:
chunk = list(islice(f,chunkSize))
if not chunk:
break
points = [(p.x,p.y) for p in chunk]
index = nonzero(points_inside_poly(points, verts))[0]
TotPoints += len(index) #add points to count inside th plot
chunk = [chunk[l] for l in index]
for p in chunk:
file_out.write("%s %s %s %s %s %s %s %s %s %s %s" % (p.x, p.y, p.z, p.intensity,p.return_number,p.number_of_returns,p.scan_direction,p.flightline_edge,p.classification,p.scan_angle,record)+ "\n")
if TotPoints >= MinPoints:
file_out.close()
else:
file_out.close()
os.remove("{0}_{1}_{2}.txt".format(poly_filename, inFile_filename, record))
f.close()
unutbu建议的脚本是:
import shapefile
import os
import glob
from os import path
import numpy as np
from numpy import nonzero
from matplotlib.nxutils import points_inside_poly
from itertools import islice
from liblas import file as lasfile
from shapely.geometry import Polygon
from progressbar import ProgressBar
import multiprocessing as mp
inFile ="C://04-las_clip_inside_area//prova//Ku_115_class_Notground_normalize.las"
poly ="C://04-las_clip_inside_area//prova//ku_115_plot_clip.shp"
chunkSize = None
MinPoints = 1
def pointinside(record):
verts = np.array(record.shape.points, float)
record = record.record[0]
index = nonzero(points_inside_poly(points, verts))[0]
if len(index) >= MinPoints:
outfile = "{0}_{1}_{2}.txt".format(poly_filename, inFile_filename, record)
with open(outfile, "w") as file_out:
inside_points = [lasfile.File(inFile, None, 'r')[l] for l in index]
for p in inside_points:
fields = (p.x, p.y, p.z, p.intensity, p.return_number,
p.number_of_returns, p.scan_direction, p.flightline_edge,
p.classification, p.scan_angle, record)
file_out.write(' '.join(map(str, fields)) + "\n")
sf = shapefile.Reader(poly) #open shpfile
sr = sf.shapeRecords()
poly_filename, ext = path.splitext(poly)
inFile_filename = os.path.splitext(os.path.basename(inFile))[0]
pbar = ProgressBar(len(sr)) # set progressbar
if chunkSize == None:
points = [(p.x,p.y) for p in lasfile.File(inFile,None,'r')]
for i in xrange(len(sr)):
pbar.update(i+1) # progressbar
proc = mp.Process(target = pointinside, args = (sr[i], ))
proc.start()
proc.join()
答案 0 :(得分:4)
The only reliable way释放用于临时计算的内存是在子进程中运行该计算。当子进程结束时,将释放内存。
如果将外部循环中的代码移动到一个函数中(让我们称之为work
),那么您可以使用work
模块在子进程中运行multiprocessing
:
import sys
import os
import time
import itertools
import multiprocessing as mp
import numpy as np
import matplotlib.nxutils as nx
import liblas
import shapefile
clock = time.clock if sys.platform == 'win32' else time.time
def LAS2TXTClipSplitbyChunk(inFile, poly, chunkSize = 1, MinPoints = 1):
sf = shapefile.Reader(poly) #open shpfile
sr = sf.shapeRecords()
poly_filename, ext = os.path.splitext(poly)
for record in sr:
inFile_filename = os.path.splitext(os.path.basename(inFile))[0]
record_num = record.record[0]
out_filename = '{0}_{1}_{2}.txt'.format(
poly_filename, inFile_filename, record_num)
pool.apply_async(pointinside,
args = (record, out_filename, inFile, chunkSize, MinPoints),
callback = update)
def pointinside(record, out_filename, inFile, chunkSize, MinPoints):
start = clock()
record_num = record.record[0]
verts = np.array(record.shape.points, float)
f = iter(liblas.file.File(inFile, None, 'rb'))
result = []
worth_writing = False
for chunk in iter(lambda: list(itertools.islice(f, chunkSize)), []):
points = [(p.x, p.y) for p in chunk]
index = nx.points_inside_poly(points, verts)
chunk = [p for inside, p in itertools.izip(index,chunk) if inside]
for p in chunk:
fields = (p.x, p.y, p.z, p.intensity, p.return_number,
p.number_of_returns, p.scan_direction, p.flightline_edge,
p.classification, p.scan_angle, record_num)
result.append(' '.join(map(str, fields)))
if len(result) >= bufferSize:
# Writing to disk is slow. Doing it once for every iteration is
# inefficient. So instead build up bufferSize number of lines
# before writing them all to disk.
worth_writing = True
with open(out_filename, 'a') as file_out:
file_out.write('\n'.join(result)+'\n')
result = []
# In case there were some results (less than bufferSize lines), we
# dump them to disk here.
if (len(result) >= MinPoints) or worth_writing:
with open(out_filename, 'a') as file_out:
file_out.write('\n'.join(result)+'\n')
f.close()
end = clock()
return end-start
def update(result):
with open(debug_filename, 'a') as f:
f.write('{r}\n'.format(r = result))
if __name__ == '__main__':
workdir = 'C://04-las_clip_inside_area//prova//'
# workdir = os.path.expanduser('~/tmp/tmp')
os.chdir(workdir)
inFile = 'Ku_115_class_Notground_normalize.las'
poly = 'ku_115_plot_clip.shp'
debug_filename = 'debug.dat'
chunkSize = None
MinPoints = 1
bufferSize = max(MinPoints, 100)
pool = mp.Pool()
LAS2TXTClipSplitbyChunk(inFile, poly, chunkSize, MinPoints)
pool.close()
pool.join()
以下是每项任务完成所需时间的图表:
In [129]: import matplotlib.pyplot as plt
In [130]: import numpy as np
In [131]: x = np.genfromtxt('debug.dat')
In [132]: plt.plot(x)
Out[132]: [<matplotlib.lines.Line2D object at 0xe309b4c>]
In [133]: plt.show()
我没有看到任何渐进的减速。也许试一试这段代码。