我基本上是在寻找一种方法来在R.中做this Ruby script的变体 我有一个任意数字列表(在这种情况下为回归图的主持人的步骤),它们彼此之间的距离不等,我想要围绕这些数值范围内的值进行舍入数字到列表中最近的数字。 范围不重叠。
arbitrary.numbers <- c(4,10,15) / 10
numbers <- c(16:1 / 10, 0.39, 1.45)
range <- 0.1
预期产出:
numbers
## 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.39 1.45
round_to_nearest_neighbour_in_range(numbers,arbitrary.numbers,range)
## 1.5 1.5 1.5 1.3 1.2 1.0 1.0 1.0 0.8 0.7 0.6 0.4 0.4 0.4 0.2 0.1 0.4 1.5
我有一个小助手功能,可以解决我的具体问题,但它不是很灵活,它包含一个循环。我可以在这里发布,但我认为真正的解决方案看起来会完全不同。
> numbers = rep(numbers,length.out = 1000000)
> system.time({ mvg.round(numbers,arbitrary.numbers,range) })[3]
elapsed
0.067
> system.time({ rinker.loop.round(numbers,arbitrary.numbers,range) })[3]
elapsed
0.289
> system.time({ rinker.round(numbers,arbitrary.numbers,range) })[3]
elapsed
1.403
> system.time({ nograpes.round(numbers,arbitrary.numbers,range) })[3]
elapsed
1.971
> system.time({ january.round(numbers,arbitrary.numbers,range) })[3]
elapsed
16.12
> system.time({ shariff.round(numbers,arbitrary.numbers,range) })[3]
elapsed
15.833
> system.time({ mplourde.round(numbers,arbitrary.numbers,range) })[3]
elapsed
9.613
> system.time({ kohske.round(numbers,arbitrary.numbers,range) })[3]
elapsed
26.274
MvG的功能最快,比Tyler Rinker的第二个功能快5倍。
答案 0 :(得分:9)
矢量化解决方案,没有任何apply
族函数或循环:
密钥是findInterval
,它在arbitrary.numbers
中找到numbers
中每个元素都在“之间”的“空格”。因此,findInterval(6,c(2,4,7,8))
会返回2
,因为6
介于c(2,4,7,8)
的第2和第3个索引之间。
# arbitrary.numbers is assumed to be sorted.
# find the index of the number just below each number, and just above.
# So for 6 in c(2,4,7,8) we would find 2 and 3.
low<-findInterval(numbers,arbitrary.numbers) # find index of number just below
high<-low+1 # find the corresponding index just above.
# Find the actual absolute difference between the arbitrary number above and below.
# So for 6 in c(2,4,7,8) we would find 2 and 1.
# (The absolute differences to 4 and 7).
low.diff<-numbers-arbitrary.numbers[ifelse(low==0,NA,low)]
high.diff<-arbitrary.numbers[ifelse(high==0,NA,high)]-numbers
# Find the minimum difference.
# In the example we would find that 6 is closest to 7,
# because the difference is 1.
mins<-pmin(low.diff,high.diff,na.rm=T)
# For each number, pick the arbitrary number with the minimum difference.
# So for 6 pick out 7.
pick<-ifelse(!is.na(low.diff) & mins==low.diff,low,high)
# Compare the actual minimum difference to the range.
ifelse(mins<=range+.Machine$double.eps,arbitrary.numbers[pick],numbers)
# [1] 1.5 1.5 1.5 1.3 1.2 1.0 1.0 1.0 0.8 0.7 0.6 0.4 0.4 0.4 0.2 0.1 0.4 1.5
答案 1 :(得分:4)
使用findInterval
的另一种解决方案:
arbitrary.numbers<-sort(arbitrary.numbers) # need them sorted
range <- range*1.000001 # avoid rounding issues
nearest <- findInterval(numbers, arbitrary.numbers - range) # index of nearest
nearest <- c(-Inf, arbitrary.numbers)[nearest + 1] # value of nearest
diff <- numbers - nearest # compute errors
snap <- diff <= range # only snap near numbers
numbers[snap] <- nearest[snap] # snap values to nearest
print(numbers)
上述代码中的nearest
在数学上并不是最接近的数字。相反,它是nearest[i] - range <= numbers[i]
或等效nearest[i] <= numbers[i] + range
的最大任意数。因此,我们一次性找到最大的任意数字,它在给定输入数字的捕捉范围内,或者仍然太小。出于这个原因,我们只需要检查snap
的一种方式。不需要绝对值,甚至从这篇文章的前一版本开始的平方也是不必要的。
感谢Interval search on a data frame指向findInterval
处的指针,因为我在answer by nograpes中识别它之前就找到了它。
如果与原始问题相比,你有重叠的范围,你可以这样写:
arbitrary.numbers<-sort(arbitrary.numbers) # need them sorted
range <- range*1.000001 # avoid rounding issues
nearest <- findInterval(numbers, arbitrary.numbers) + 1 # index of interval
hi <- c(arbitrary.numbers, Inf)[nearest] # next larger
nearest <- c(-Inf, arbitrary.numbers)[nearest] # next smaller
takehi <- (hi - numbers) < (numbers - nearest) # larger better than smaller
nearest[takehi] <- hi[takehi] # now nearest is really nearest
snap <- abs(nearest - numbers) <= range # only snap near numbers
numbers[snap] <- nearest[snap] # snap values to nearest
print(numbers)
在此代码中,nearest
最终成为最接近的数字。这是通过考虑每个间隔的两个端点来实现的。从本质上讲,这与version by nograpes非常相似,但它避免使用ifelse
和NA
,这样可以提高性能,因为它可以减少分支指令的数量。
答案 2 :(得分:3)
这是你想要的吗?
> idx <- abs(outer(arbitrary.numbers, numbers, `-`)) <= (range+.Machine$double.eps)
> rounded <- arbitrary.numbers[apply(rbind(idx, colSums(idx) == 0), 2, which)]
> ifelse(is.na(rounded), numbers, rounded)
[1] 1.5 1.5 1.5 1.3 1.2 1.0 1.0 1.0 0.8 0.7 0.6 0.4 0.4 0.4 0.2 0.1 0.4 1.5
答案 3 :(得分:2)
请注意,由于舍入错误(最有可能),我使用range = 0.1000001来达到预期的效果。
range <- range + 0.0000001
blah <- rbind( numbers, sapply( numbers, function( x ) abs( x - arbitrary.numbers ) ) )
ff <- function( y ) { if( min( y[-1] ) <= range + 0.000001 ) arbitrary.numbers[ which.min( y[ -1 ] ) ] else y[1] }
apply( blah, 2, ff )
答案 4 :(得分:2)
这仍然更短:
sapply(numbers, function(x) ifelse(min(abs(arbitrary.numbers - x)) >
range + .Machine$double.eps, x, arbitrary.numbers[which.min
(abs(arbitrary.numbers - x))] ))
谢谢@MvG
答案 5 :(得分:1)
另一种选择:
arb.round <- function(numbers, arbitrary.numbers, range) {
arrnd <- function(x, ns, r){
ifelse(abs(x - ns) <= range +.00000001, ns, x)
}
lapply(1:length(arbitrary.numbers), function(i){
numbers <<- arrnd(numbers, arbitrary.numbers[i], range)
}
)
numbers
}
arb.round(numbers, arbitrary.numbers, range)
收益率:
> arb.round(numbers, arbitrary.numbers, range)
[1] 1.5 1.5 1.5 1.3 1.2 1.0 1.0 1.0 0.8 0.7 0.6 0.4 0.4 0.4 0.2 0.1 0.4 1.5
编辑:我在功能结束时删除了回复电话,因为它没有必要,并且可以燃烧时间。
编辑:我认为这里的循环会更快:
loop.round <- function(numbers, arbitrary.numbers, range) {
arrnd <- function(x, ns, r){
ifelse(abs(x - ns) <= range +.00000001, ns, x)
}
for(i in seq_along(arbitrary.numbers)){
numbers <- arrnd(numbers, arbitrary.numbers[i], range)
}
numbers
}