用于快速多维数据查找的数据模型和数据存储技术

时间:2012-10-10 19:56:49

标签: python hashmap key-value datastore datamodel

我有一个parent hashmap数据结构,其中一个字符串作为键,并将hashmap数据结构作为子项(guess child1child2,...,childN) 。每个子节点都是一个简单的键值映射,其数字为键,字符串为值。 在伪代码中:

parent['key1'] = child1;    // child1 is a hash map data structure
child1[0] = 'foo';
child[1] = 'bar';
...

我需要将此数据结构实现为数据库系统中的快速查找表。 让我们以Python作为参考语言。

解决方案的要求:

  1. 尽快检索孩子们的祖母!
  2. parent哈希估计总重量最多为500 MB
  3. 用例如下:

    1. 客户端Python程序在数据存储区中查询特定的子哈希
    2. 数据存储区返回子哈希
    3. Python程序将整个散列传递给特定函数,从散列中提取特定值(它已经知道要使用哪个键)并将其传递给第二个函数
    4. 您会推荐内存中的键值数据存储(例如Redis)还是更经典的“关系型”数据库解决方案?您建议我使用哪种数据模型?

2 个答案:

答案 0 :(得分:2)

绝对适合Redis。它不仅非常快,而且还能完全处理您需要的结构:http://redis.io/commands#hash

在您的情况下,您可以避免阅读整个'子哈希',因为客户端“从哈希中提取特定值(它已经知道要使用哪个密钥)”

redis> HMSET myhash field1 "Hello" field2 "World"
OK
redis> HGET myhash field1
"Hello"
redis> HGET myhash field2
"World"

或者,如果你想要整个哈希:

redis> HGETALL myhash
1) "field1"
2) "Hello"
3) "field2"
4) "World"
redis>

当然,使用client library可以在可行的对象中提供结果,在您的情况下,是一个Python字典。

答案 1 :(得分:2)

使用redis-py的示例代码,假设您已安装Redis(理想情况为hiredis),将每个父项保存为哈希字段,子项为序列化字符串,并处理序列化和反序列化客户方:

JSON版本:

## JSON version
import json 
# you could use pickle instead, 
# just replace json.dumps/json.loads with pickle/unpickle

import redis

# set up the redis client
r = redis.StrictRedis(host = '', port = 6379, db = 0)

# sample parent dicts
parent0 = {'child0': {0:'a', 1:'b', 2:'c',}, 'child1':{5:'e', 6:'f', 7:'g'}}
parent1 = {'child0': {0:'h', 1:'i', 2:'j',}, 'child1':{5:'k', 6:'l', 7:'m'}}

# save the parents as hashfields, with the children as serialized strings
# bear in mind that JSON will convert the int keys to strings in the dumps() process
r.hmset('parent0', {key: json.dumps(parent0[key]) for key in parent0})
r.hmset('parent1', {key: json.dumps(parent0[key]) for key in parent1})


# Get a child dict from a parent
# say child1 of parent0
childstring = r.hget('parent0', 'child1') 
childdict = json.loads(childstring) 
# this could have been done in a single line... 

# if you want to convert the keys back to ints:
for key in childdict.keys():
    childdict[int(key)] = childdict[key]
    del childdict[key]

print childdict

pickle版本:

## pickle version
# For pickle, you need a file-like object. 
# StringIO is the native python one, whie cStringIO 
# is the c implementation of the same.
# cStringIO is faster
# see http://docs.python.org/library/stringio.html and
# http://www.doughellmann.com/PyMOTW/StringIO/ for more information
import pickle
# Find the best implementation available on this platform
try:
    from cStringIO import StringIO
except:
    from StringIO import StringIO

import redis

# set up the redis client
r = redis.StrictRedis(host = '', port = 6379, db = 0)

# sample parent dicts
parent0 = {'child0': {0:'a', 1:'b', 2:'c',}, 'child1':{5:'e', 6:'f', 7:'g'}}
parent1 = {'child0': {0:'h', 1:'i', 2:'j',}, 'child1':{5:'k', 6:'l', 7:'m'}}

# define a class with a reusable StringIO object
class Pickler(object):
    """Simple helper class to use pickle with a reusable string buffer object"""
    def __init__(self):
        self.tmpstr = StringIO()

    def __del__(self):
        # close the StringIO buffer and delete it
        self.tmpstr.close()
        del self.tmpstr

    def dump(self, obj):
        """Pickle an object and return the pickled string"""
        # empty current buffer
        self.tmpstr.seek(0,0)
        self.tmpstr.truncate(0)
        # pickle obj into the buffer
        pickle.dump(obj, self.tmpstr)
        # move the buffer pointer to the start
        self.tmpstr.seek(0,0)
        # return the pickled buffer as a string
        return self.tmpstr.read()

    def load(self, obj):
        """load a pickled object string and return the object"""
        # empty the current buffer
        self.tmpstr.seek(0,0)
        self.tmpstr.truncate(0)
        # load the pickled obj string into the buffer
        self.tmpstr.write(obj)
        # move the buffer pointer to start
        self.tmpstr.seek(0,0)
        # load the pickled buffer into an object
        return pickle.load(self.tmpstr)


pickler = Pickler()

# save the parents as hashfields, with the children as pickled strings, 
# pickled using our helper class
r.hmset('parent0', {key: pickler.dump(parent0[key]) for key in parent0})
r.hmset('parent1', {key: pickler.dump(parent1[key]) for key in parent1})


# Get a child dict from a parent
# say child1 of parent0
childstring = r.hget('parent0', 'child1') 
# this could be done in a single line... 
childdict = pickler.load(childstring) 

# we don't need to do any str to int conversion on the keys.

print childdict