我有以下代码。
completemodel <- function(model, colnum)
{
modlst = c()
tuplenum = length(model)
if(tuplenum != 0)
for(i in 1:tuplenum)
modlst = c(modlst, model[[i]])
index = seq(0, colnum-1)
inddiff = setdiff(index, modlst)
inddifflen = length(inddiff)
for(i in seq(length.out=inddifflen))
model = append(model, inddiff[i])
return(model)
}
## Calculate number of parameters in model.
numparam <- function(mod, colnum)
{
library(RJSONIO)
mod = fromJSON(mod)
mod = completemodel(mod, colnum)
totnum = 0
for(tup in mod)
totnum = totnum +(4**length(tup))
return(totnum)
}
x = cbind.data.frame(rownum=c(100, 100), colnum=c(10, 20), modeltrue=c("[]", "[]"), modelresult=c("[[1,2]]","[[1,3]]"), stringsAsFactors=FALSE)
> x
rows colnum modeltrue modelresult
1 100 10 [] [[1,2]]
2 100 20 [] [[1,3]]
如何操作x
给我一个如下所示的数据框?当然在这里
我的意思是例如当我写numparam("[]", 10)
时,numparam("[]", 10)
。
rownum colnum numparam_modeltrue numparam_modelresult
100 10 numparam("[]", 10) numparam("[[1,2]]", 10)
100 20 numparam("[]", 20) numparam("[[1,3]]", 20)
某些版本的apply函数可能有效,但我在找到合适的配方时遇到了问题。
更新:似乎如果rownnum
,colnum
元组不是唯一的,那么可以执行以下操作。
x = cbind.data.frame(id=c(1, 2, 3), rownum=c(100, 100, 100), colnum=c(10, 20, 20), modeltrue=c("[]", "[]", "[]"),
modelresult=c("[[1,2]]","[[1,3]]","[[1,3, 4]]"), stringsAsFactors = FALSE)
##Then, create a data.table and set the key
library(data.table)
xDT <- as.data.table(x)
setkeyv(xDT, c("id", "rownum", "colnum")
这是正确的方法吗?
答案 0 :(得分:3)
如果您对其开放,则可以使用data.table
包。
首先,创建一个data.table
,添加一个唯一标识符列id
并将其设置为键
library(data.table)
xDT <- as.data.table(x)
xDT[, id := seq_len(nrow(xDT))]
setkey(xDT, "id")
然后,使用do.call
,您可以在相应的列上运行numparam
函数:
res1 <- xDT[, list(numparam_modeltrue = do.call(numparam, unname(.SD))),
.SDcols = c(3, 2), by = key(xDT)]
res2 <- xDT[, list(numparam_modelresult = do.call(numparam, unname(.SD))),
.SDcols = c(4, 2), by = key(xDT)]
然后将结果合并到data.table
中xDT[res1][res2][, c("modeltrue", "modelresult") := NULL, with = FALSE]
id rownum colnum numparam_modeltrue numparam_modelresult
1: 1 100 10 40 48
2: 2 100 20 80 88
修改强>
正如Matthew Dowle建议的那样,你最终可以达到相同的结果而不是最后的结果:
xDT[,numparam_modeltrue := do.call(numparam, unname(.SD)),
.SDcols = c(3, 2), by = key(xDT)]
xDT[,numparam_modelresult := do.call(numparam, unname(.SD)),
.SDcols = c(4, 2), by = key(xDT)]
如果你想删除列modeltrue
和modelresult
,
xDT[,c("modeltrue", "modelresult") := NULL, with = FALSE]
# NOTE that with = FALSE shouldn't be necessary with data.table 1.8.3
# But I'm still with 1.8.2
答案 1 :(得分:1)
以下代码的工作原理。不过,它不是很漂亮。欢迎提出改进建议。特别是, 不必转置矩阵并添加列名称也是很好的,而且,因为它返回一个矩阵,所以仍然 整数转换为字符串的烦人问题。感谢flodel 有关his answer to "Pass arguments to a function from each row of a matrix"的提示。
completemodel <- function(model, colnum)
{
modlst = c()
tuplenum = length(model)
if(tuplenum != 0)
for(i in 1:tuplenum)
modlst = c(modlst, model[[i]])
index = seq(0, colnum-1)
inddiff = setdiff(index, modlst)
inddifflen = length(inddiff)
for(i in seq(length.out=inddifflen))
model = append(model, inddiff[i])
return(model)
}
## Calculate number of parameters in model.
numparam <- function(mod, colnum)
{
library(RJSONIO)
mod = fromJSON(mod)
print(paste("mod", mod))
mod = completemodel(mod, colnum)
totnum = 0
for(tup in mod)
totnum = totnum +(4**length(tup))
return(totnum)
}
numparamvec <- function(rownum, colnum, modeltrue, modelresult)
{
totnum1 = numparam(modeltrue, as.integer(colnum))
totnum2 = numparam(modelresult, as.integer(colnum))
return(c(rownum, colnum, totnum1, totnum2))
}
x = cbind.data.frame(rownum=c(100, 100), colnum=c(10, 20), modeltrue=c("[]", "[]"), modelresult=c("[[1,2]]","[[1,3]]"), stringsAsFactors=FALSE)
val = t(apply(x, 1, function(x)do.call(numparamvec, as.list(x))))
colnames(val) = c("rownum", "colnum", "numparam_modeltrue", "numparam_modelresult")
答案 2 :(得分:1)
使用sapply的替代方法:
numparamvec <- function(rownum, colnum, modeltrue, modelresult)
{
totnum1 = numparam(modeltrue, as.integer(colnum))
totnum2 = numparam(modelresult, as.integer(colnum))
return(c(rownum = rownum, colnum = colnum,
numparam_modeltrue = totnum1, numparam_modelresult = totnum2))
}
val <- sapply(seq_len(nrow(x)),
function(y) do.call(numparamvec, x[y, ]))
> as.data.frame(t(val))
rownum colnum numparam_modeltrue numparam_modelresult
1 100 10 40 48
2 100 20 80 88
使用vapply
的替代方法:
val <- t(vapply(seq_len(nrow(x)), function(y) do.call(numparamvec, x[y, ]),
c(rownum = 0, colnum = 0, numparam_modeltrue = 0, numparam_modelresult = 0)))
> val
rownum colnum numparam_modeltrue numparam_modelresult
[1,] 100 10 40 48
[2,] 100 20 80 88