我开始在R中使用data.table包来提高代码的性能。我使用以下代码:
sp500 <- read.csv('../rawdata/GMTSP.csv')
days <- c("Monday","Tuesday","Wednesday","Thursday","Friday","Saturday","Sunday")
# Using data.table to get the things much much faster
sp500 <- data.table(sp500, key="Date")
sp500 <- sp500[,Date:=as.Date(Date, "%m/%d/%Y")]
sp500 <- sp500[,Weekday:=factor(weekdays(sp500[,Date]), levels=days, ordered=T)]
sp500 <- sp500[,Year:=(as.POSIXlt(Date)$year+1900)]
sp500 <- sp500[,Month:=(as.POSIXlt(Date)$mon+1)]
我注意到,与其他创建工作日的函数相比,as.Date函数完成的转换非常慢。为什么会这样?是否有更好/更快的解决方案,如何转换为日期格式? (如果你问我是否真的需要日期格式,可能是的,因为然后使用ggplot2制作情节,这就像这种数据的魅力一样。)
更准确
> system.time(sp500 <- sp500[,Date:=as.Date(Date, "%m/%d/%Y")])
user system elapsed
92.603 0.289 93.014
> system.time(sp500 <- sp500[,Weekday:=factor(weekdays(sp500[,Date]), levels=days, ordered=T)])
user system elapsed
1.938 0.062 2.001
> system.time(sp500 <- sp500[,Year:=(as.POSIXlt(Date)$year+1900)])
user system elapsed
0.304 0.001 0.305
在MacAir i5上,观察结果略少于3000000。
由于
答案 0 :(得分:24)
正如其他人所提到的,strptime
(从字符转换为POSIXlt)是这里的瓶颈。另一个简单的解决方案是使用lubridate
包及其fast_strptime
方法。
以下是我的数据的样子:
> tables()
NAME NROW MB COLS
[1,] pp 3,718,339 126 session_id,date,user_id,path,num_sessions
KEY
[1,] user_id,date
Total: 126MB
> pp[, 2, with = F]
date
1: 2013-09-25
2: 2013-09-25
3: 2013-09-25
4: 2013-09-25
5: 2013-09-25
---
3718335: 2013-09-25
3718336: 2013-09-25
3718337: 2013-09-25
3718338: 2013-10-11
3718339: 2013-10-11
> system.time(pp[, date := as.Date(fast_strptime(date, "%Y-%m-%d"))])
user system elapsed
0.315 0.026 0.344
进行比较:
> system.time(pp[, date := as.Date(date, "%Y-%m-%d")])
user system elapsed
108.193 0.399 108.844
那快了~316倍!
答案 1 :(得分:18)
我认为只是as.Date
使用character
通过Date
将POSIXlt
转换为strptime
。我相信strptime
非常慢。
要通过自己跟踪,请键入as.Date
,然后methods(as.Date)
,然后查看character
方法。
> as.Date
function (x, ...)
UseMethod("as.Date")
<bytecode: 0x2cf4b20>
<environment: namespace:base>
> methods(as.Date)
[1] as.Date.character as.Date.date as.Date.dates as.Date.default
[5] as.Date.factor as.Date.IDate* as.Date.numeric as.Date.POSIXct
[9] as.Date.POSIXlt
Non-visible functions are asterisked
> as.Date.character
function (x, format = "", ...)
{
charToDate <- function(x) {
xx <- x[1L]
if (is.na(xx)) {
j <- 1L
while (is.na(xx) && (j <- j + 1L) <= length(x)) xx <- x[j]
if (is.na(xx))
f <- "%Y-%m-%d"
}
if (is.na(xx) || !is.na(strptime(xx, f <- "%Y-%m-%d",
tz = "GMT")) || !is.na(strptime(xx, f <- "%Y/%m/%d",
tz = "GMT")))
return(strptime(x, f))
stop("character string is not in a standard unambiguous format")
}
res <- if (missing(format))
charToDate(x)
else strptime(x, format, tz = "GMT") #### slow part, I think ####
as.Date(res)
}
<bytecode: 0x2cf6da0>
<environment: namespace:base>
>
为什么as.POSIXlt(Date)$year+1900
相对较快?再次,追溯它:
> as.POSIXct
function (x, tz = "", ...)
UseMethod("as.POSIXct")
<bytecode: 0x2936de8>
<environment: namespace:base>
> methods(as.POSIXct)
[1] as.POSIXct.date as.POSIXct.Date as.POSIXct.dates as.POSIXct.default
[5] as.POSIXct.IDate* as.POSIXct.ITime* as.POSIXct.numeric as.POSIXct.POSIXlt
Non-visible functions are asterisked
> as.POSIXlt.Date
function (x, ...)
{
y <- .Internal(Date2POSIXlt(x))
names(y$year) <- names(x)
y
}
<bytecode: 0x395e328>
<environment: namespace:base>
>
好奇,让我们深入了解Date2POSIXlt。对于这一点,我们需要grep main / src来知道要查看哪个.c文件。
~/R/Rtrunk/src/main$ grep Date2POSIXlt *
names.c:{"Date2POSIXlt",do_D2POSIXlt, 0, 11, 1, {PP_FUNCALL, PREC_FN, 0}},
$
现在我们知道我们需要寻找D2POSIXlt:
~/R/Rtrunk/src/main$ grep D2POSIXlt *
datetime.c:SEXP attribute_hidden do_D2POSIXlt(SEXP call, SEXP op, SEXP args, SEXP env)
names.c:{"Date2POSIXlt",do_D2POSIXlt, 0, 11, 1, {PP_FUNCALL, PREC_FN, 0}},
$
哦,我们可以猜到datetime.c。无论如何,所以看看最新的实时副本:
在那里搜索D2POSIXlt
,您会看到从日期(数字)到POSIXlt的简单程度。您还将看到POSIXlt是一个实数向量(8个字节)加上七个整数向量(每个4个字节)。这是每个日期的40个字节!
所以问题的关键(我认为)是strptime
如此缓慢的原因,也许这可以在R中得到改善。或者直接或间接地避免POSIXlt
。
以下是使用相关项目数量(3,000,000)的可重复示例:
> Range = seq(as.Date("2000-01-01"),as.Date("2012-01-01"),by="days")
> Date = format(sample(Range,3000000,replace=TRUE),"%m/%d/%Y")
> system.time(as.Date(Date, "%m/%d/%Y"))
user system elapsed
21.681 0.060 21.760
> system.time(strptime(Date, "%m/%d/%Y"))
user system elapsed
29.594 8.633 38.270
> system.time(strptime(Date, "%m/%d/%Y", tz="GMT"))
user system elapsed
19.785 0.000 19.802
传递tz
似乎加快了strptime
as.Date.character
。所以也许这取决于你的语言环境。但strptime
似乎是罪魁祸首,而不是data.table
。也许重新运行这个例子,看看你的机器上是否需要90秒?
答案 2 :(得分:8)
感谢您的建议。我通过自己编写高斯算法来解决它,并得到了更好的结果,见下文。
getWeekDay <- function(year, month, day) {
# Implementation of the Gaussian algorithm to get weekday 0 - Sunday, ... , 7 - Saturday
Y <- year
Y[month<3] <- (Y[month<3] - 1)
d <- day
m <- ((month + 9)%%12) + 1
c <- floor(Y/100)
y <- Y-c*100
dayofweek <- (d + floor(2.6*m - 0.2) + y + floor(y/4) + floor(c/4) - 2*c) %% 7
return(dayofweek)
}
sp500 <- read.csv('../rawdata/GMTSP.csv')
days <- c("Sunday","Monday","Tuesday","Wednesday","Thursday","Friday","Saturday")
# Using data.table to get the things much much faster
sp500 <- data.table(sp500, key="Date")
sp500 <- sp500[,Month:=as.integer(substr(Date,1,2))]
sp500 <- sp500[,Day:=as.integer(substr(Date,4,5))]
sp500 <- sp500[,Year:=as.integer(substr(Date,7,10))]
#sp500 <- sp500[,Date:=as.Date(Date, "%m/%d/%Y")]
#sp500 <- sp500[,Weekday:=factor(weekdays(sp500[,Date]), levels=days, ordered=T)]
sp500 <- sp500[,Weekday:=factor(getWeekDay(Year, Month, Day))]
levels(sp500$Weekday) <- days
运行上面的整个块给出(包括从csv读取日期)... Data.table确实令人印象深刻。
user system elapsed
19.074 0.803 20.284
转换的时间本身已经过了3.49。
答案 3 :(得分:5)
这是一个老问题,但我认为这个小技巧可能有用。如果您有多个具有相同日期的行,则可以执行
<xsl:for-each select="@*">
它更快,因为它只处理每个日期一次(在我的4000万行数据集中,从25秒到0.5秒)。
答案 4 :(得分:2)
我原本以为:&#34;上面as.Date的参数没有指定的格式。&#34;
我现在想:我假设您所关注的日期值是标准格式。我猜不会。所以你正在做两个过程。您正在从字符格式重新格式化为日期格式,并且您将根据具有完全不同的归类序列的新值重新排序。