我编写了Matrix Multiply CUDA程序,但与CPU结果相比,它总是得到错误的答案?

时间:2012-10-07 14:32:39

标签: c cuda

// Includes
#include <stdio.h>
#include <cutil_inline.h>
#include <shrQATest.h>
#include <time.h>
#define CLOCKS_PER_SEC ((clock_t)1000)

// Variables
float* h_A;
float* h_B;
float* h_C;
float* h_C_cpu;
float* d_A;
float* d_B;
float* d_C;
bool noprompt = false;

// Functions
void CleanupResources(void);
void RandomInit(float*, int);
void ParseArguments(int, char**);
void ZeroInit(float*, int);
// Device code

__global__ void MatrixMul(const float*A,const float*B,float*C,int Arow,int Acol,int Bcol)
{
    int coli= blockDim.x * blockIdx.x + threadIdx.x;
    int rowi= blockDim.y * blockIdx.y + threadIdx.y;
    float tmp=0;
    C[rowi*Bcol+coli]=0;
    for(int k=0;k<Acol;k++)
    {
        if(rowi<Arow&&coli<Bcol)
            C[rowi*Bcol+coli]+=A[rowi*Acol+k]*B[k*Bcol+coli];
    }
    //__syncthreads();
    //C[rowi*Bcol+coli]=tmp;
}

// Host code
int main(int argc, char** argv)
{
    shrQAStart(argc, argv);
    clock_t start,end;
    double duration;
    printf("Vector Addition\n");
    int a_row=800,a_col=600,b_row=600,b_col=900;
    int a_size =a_row*a_col* sizeof(float);
    int b_size=b_row*b_col*sizeof(float);
    int c_size=a_row*b_col*sizeof(float);
    //const int matrixrow=10000,matrixcol=10000;


    h_A=(float*)malloc(a_size);
    h_B=(float*)malloc(b_size);
    h_C=(float*)malloc(c_size);
    h_C_cpu=(float*)malloc(c_size);
    RandomInit(h_A, a_size/sizeof(float));
    RandomInit(h_B, b_size/sizeof(float));
    //memset(h_C,0,c_size);
    ZeroInit(h_C,c_size/sizeof(float));
    //memset(h_C_cpu,0,c_size);
    ZeroInit(h_C_cpu,c_size/sizeof(float));
    //RandomInit(h_C, c_size);
    start=clock();
    int i,j,k;
    for(i=0;i<a_row;i++)
    {
        for(j=0;j<b_col;j++)
        {
            for(k=0;k<a_col;k++)
            {
                h_C_cpu[i*b_col+j]+=h_A[i*a_col+k]*h_B[k*b_col+j];
            }
        }
    }
    end=clock();
    duration=double(end-start)/CLOCKS_PER_SEC;
    printf("CPU time: %lf\n",duration);



    cutilSafeCall(cudaMalloc((void**)&d_A,a_size));
    cutilSafeCall(cudaMalloc((void**)&d_B,b_size));
    cutilSafeCall(cudaMalloc((void**)&d_C,c_size));


    ParseArguments(argc, argv);

    // Allocate input vectors h_A and h_B in host memory
    /*h_A = (float*)malloc(size);
    if (h_A == 0) CleanupResources();
    h_B = (float*)malloc(size);
    if (h_B == 0) CleanupResources();
    h_C = (float*)malloc(size);
    if (h_C == 0) CleanupResources();*/

    // Initialize input vectors


    // Allocate vectors in device memory
    /*cutilSafeCall( cudaMalloc((void**)&d_A, size) );
    cutilSafeCall( cudaMalloc((void**)&d_B, size) );
    cutilSafeCall( cudaMalloc((void**)&d_C, size) );*/
    start=clock();
    // Copy vectors from host memory to device memory
    cutilSafeCall( cudaMemcpy(d_A, h_A, a_size, cudaMemcpyHostToDevice) );
    cutilSafeCall( cudaMemcpy(d_B, h_B, b_size, cudaMemcpyHostToDevice) );

    // Invoke kernel
    //int threadsPerBlock = 1024;
    dim3 dimblock(32,32);
    int blockx = (b_col + dimblock.x - 1) /dimblock.x;
    int blocky = (a_row + dimblock.y - 1) /dimblock.y;
    dim3 dimgrid(blockx,blocky);

    MatrixMul<<<dimgrid, dimblock>>>(d_A,d_B,d_C,a_row,a_col,b_col);


    //myVecAdd<<<1,threadsPerBlock>>>(d_A,d_B,d_C,N);
    cutilCheckMsg("kernel launch failure");
#ifdef _DEBUG
    cutilSafeCall( cutilDeviceSynchronize() );
#endif

    // Copy result from device memory to host memory
    // h_C contains the result in host memory
    cutilSafeCall( cudaMemcpy(h_C, d_C, c_size, cudaMemcpyDeviceToHost) );
    end=clock();
    duration=double(end-start)/CLOCKS_PER_SEC;
    printf("GPU time: %lf\n",duration);
    // Verify result
    for (i = 0; i < a_row*b_col; ++i) {
        //float sum = h_A[i] + h_B[i];
        if (fabs(h_C[i] - h_C_cpu[i]) > 1e-5)
        {
            //printf("The result is wrong!\n");
            break;
        }
    }

    CleanupResources();
    shrQAFinishExit(argc, (const char **)argv, (i==a_row*b_col) ? QA_PASSED : QA_FAILED);
}
void ZeroInit(float* a, int N)
{
    for(int i=0;i<N;i++)
        a[i]=0;
}
void CleanupResources(void)
{
    // Free device memory
    if (d_A)
        cudaFree(d_A);
    if (d_B)
        cudaFree(d_B);
    if (d_C)
        cudaFree(d_C);

    // Free host memory
    if (h_A)
        free(h_A);
    if (h_B)
        free(h_B);
    if (h_C)
        free(h_C);

    cutilDeviceReset();
}

// Allocates an array with random float entries.
void RandomInit(float* data, int n)
{
    for (int i = 0; i < n; ++i)
        data[i] = rand() / (float)RAND_MAX;
}

// Parse program arguments
void ParseArguments(int argc, char** argv)
{
    for (int i = 0; i < argc; ++i) {
        if (strcmp(argv[i], "--noprompt") == 0 ||
            strcmp(argv[i], "-noprompt") == 0) 
        {
            noprompt = true;
            break;
        }
    }
}

上面是我的CUDA代码:“MatrixMul.cu”,我的项目只有这个文件,我把它写在SDK,VectorAdd项目中,只需修改它。我在一个 cu 文件中编写了内核函数和main函数。

我将结果与我的CPU结果进行了比较,发现它并不相同。另一个问题是,当我使用tmp变量而不是C [rowi * matrixcol + coli]时,它也是错误的,我也不知道为什么?

1 个答案:

答案 0 :(得分:2)

我发现您的代码中有2个问题。首先,在你的内核中,你没有正确地调整有效线程索引上的代码。有效的线程索引是对应于实际结果矩阵元素的索引。无效的线程索引是在该区域之外的索引。你有一个检查,但它在代码中的错误位置。而不是:

C[rowi*Bcol+coli]=0; 
for(int k=0;k<Acol;k++) 
{ 
    if(rowi<Arow&&coli<Bcol) 
        C[rowi*Bcol+coli]+=A[rowi*Acol+k]*B[k*Bcol+coli]; 
} 

使用此:

if(rowi<Arow&&coli<Bcol)  {
  C[rowi*Bcol+coli]=0; 
  for(int k=0;k<Acol;k++) 
    { 

        C[rowi*Bcol+coli]+=A[rowi*Acol+k]*B[k*Bcol+coli]; 
    } 
}

由于编写代码的方式,有效范围之外的某些线程将某些元素归零,因为它们不应该是在有效线程检查之前的这行代码所致:

C[rowi*Bcol+coli]=0; 

我发现的第二个问题是您的等效检查可能太紧了。你有这个:

    if (fabs(h_C[i] - h_C_cpu[i]) > 1e-5)  

我把它更改为:

    if (fabs(h_C[i] - h_C_cpu[i]) > 1e-4)  

通过上述更改,我得到了匹配的结果。您可以使用等效性检查来查看有多少匹配数字,但是您的数字对于32位浮点数量而言期望太多匹配数字。您在这里的剩余支票未按比例缩放,因此您不能像您想象的那样紧张。如果您创建了缩放残差检查,那么您可以确定检查每个元素的给定精度。

作为进一步的建议,在结果比较循环中,我将更改以下行:

        //printf("The result is wrong!\n"); 

要:

        printf("The result is wrong at idx: %d CPU: %f GPU: %f\n", i, h_C_cpu[i], h_C[i]);

为了获得更有用的结果,如果你想进一步使用它,那就会出错。