我试图使用递归神经网络来预测销售需求。这里
https://stackoverflow.com/a/2525149/423805
提到了PyBrain中支持的序列和示例代码。即使数据不是完全类别,我也为此示例建模了它们。数据在这里
6 6 6 6 2 6 2 6 2 2 6 2 6 6 2 6 2 4 4 4 5 6 6 1 2 2 6 6 6 2 6 2 6 6 2 6 2 2 6 2 1 2 2 6 6 6 2 1 2 6 2 6 6 2 2 6 2 2 2 6 2 6 2 2 2 2 2 6 2 2 6 6 6 6 1 2 2 6 2 2 2 2 6 2 2 2 2 3 3 2 3 2 6 6 6 6 2 6 2 6 6 2 6 2 6 6 2 6 6 2 2 3 4 3 3 1 3 1 2 1 6 1 6 6 1 6 6 2 6 2 6 2 2 2 6 6 1 6 2 6 1 2 1 6 2 6 2 2 2 2 6 6 1 6 6 2 2 6 2 2 2 3 4 4 4 6 4 6 1 6 6 1 6 6 6 6 1 6 2 2 2 6 6 6 6 2 6 6 2 2 6 2 6 2 2 2 6 2 2 2 6 6 6 6 3 2 2 6 2 2 2 2 2 2 6 2 6 2 2 2 6 2 2 6 6 2 6 6 6 2 2 2 3 3 3 4 1 6 6 1 6 6 1 6 1 6 6 6 6 1 6 6 6 2 1 2 2 2 2 2 2 3 6 6 6 6 6 2 6
1 6 6 1 6 1 1 1 1 1 1 6 6 6 1 2 1 6 6 1 1 1 6 6 2 1 6 6 1 1 1 6 1 2 1 6 2 2 2 2 2 6 1 6 6 1 2 1 6 6 6 1 1 1 6 6 1 1 1 1 6 1 1 2 1 6 1 6 1 1 6 2 6 2 6 6 6 3 6 6 1 6 6 2 2 2 3 2 2 6 6 6 1 1 6 2 6 6 2 6 2 6 6 1 3 6 6 1 1 1 2 2 3 2 2 6 2 2 2 1 6 1 6 1 1 6 2 1 1 1 2 2 1 6 1 1 1 1 2 6 1 1 1 1 6 1 6 1 2 1 6 1 6 6 1 6 1 2 2 2 2 3 3 2 2 2 6 6 6 6 2 1 1 6 1 1 1 6 1 6 1 6 1 6 1 1 6 6 2 1 1 6 6 1 1 2 6 2 6 6 6 1 2 6 1 6 1 1 1 1 6 1 6 1 1 6 6 1 6 6 1 6 1 6 6 1 1 6 6 2 2 2 2 2 2 2 2 2 6 6 6 6 1 6 6 6 1 6 6 1 6 6 1 1 6 1 3 3 3 5 1 6 6 6 6 6 6 6 6
6 6 6 6 6 6 6 2 6 6 6 6 6 6 6 2 6 6 6 6 2 6 6 6 2 2 6 6 6 6 6 6 6 1 6 2 6 6 6 6 6 6 6 6 2 6 6 1 2 6 1 6 6 1 6 2 6 6 6 6 6 6 6 2 6 6 6 2 6 6 1 6 6 6 6 6 6 6 3 3 6 3 2 1 2 2 1 6 6 1 6 1 6 6 6 6 6 6 1 6 6 6 1 6 6 6 6 6 6 6 6 6 6 6 2 6 6 6 6 6 6 6 6 2 2 6 6 2 6 1 2 6 6 6 2 6 6 2 6 6 2 6 1 6 2 6 2 1 2 6 6 2 2 6 2 6 2 2 6 2 6 6 6 2 2 2 6 6 2 6 6 2 2 6 1 2 1 2 6 6 2 2 6 6 1 2 2 1 6 2 6 2 2 1 1 5 6 3 6 1 6 6 1 2 2 6 1 6 2 6 6 1 6 2 6 2 6 6 6 1 6 1 6 6 2 2 2 1 2 3 6 1 6 1 6 1 6 1 6 6 6 1 1 6 6 6 6 6 1 6 6 6 1 6 1 1 6 6 6 6 6 6 6 6 1 6 6 1 6
6 2 2 2 2 3 3 4 4 4 5 4 3 3 6 2 6 6 6 3 4 4 3 3 3 3 3 2 6 6 3 4 4 4 4 3 4 2 6 2 2 6 2 2 6 6 3 4 5 4 4 6 3 6 6 6 2 6 2 6 6 2 2 6 4 4 5 4 3 4 3 4 4 6 2 6 6 2 2 6 2 6 6 2 6 6 2 6 6 2 6 2 6 3 5 5 5 4 4 4 3 6 2 6 6 2 6 2 6 2 2 6 2 6 6 2 6 4 4 4 4 4 4 6 3 6 6 2 6 2 6 2 6 2 6 6 2 2 2 2 2 2 2 2 2 3 3 3 5 5 4 5 3 3 3 6 2 6 6 2 2 6 2 2 2 2 6 2 3 2 2 3 6 3 2 2 3 4 4 4 4 5 5 4 4 6 6 2 6 2 6 2 2 2 2 2 2 2 5 5 4 4 5 5 2 6 2 6 6 2 6 2 6 2 2 3 3 4 4 5 4 4 4 3 4 3 6 2 6 2 2 2 2 2 2 2 2 2 2 2 3 4 4 4 4 5 4 4 4 3 2 2 2 6 2 2 2 6 2 6 2 6 2 2 2 2 2 3 2
6 2 2 2 2 3 3 4 4 4 5 4 3 3 6 2 6 6 2 3 4 4 3 4 4 3 3 2 2 6 3 4 4 4 4 3 4 2 3 2 2 6 3 3 6 6 3 4 5 4 5 3 3 2 6 6 2 6 2 6 6 2 2 6 4 4 4 4 4 4 5 4 4 6 2 6 6 2 2 6 2 6 6 2 6 6 2 6 6 2 6 2 6 3 4 4 4 4 4 4 4 6 2 6 6 2 6 2 6 6 6 6 2 6 2 2 6 4 4 4 4 4 4 6 3 3 6 2 2 2 6 2 6 2 2 2 2 2 2 2 2 2 2 2 2 3 6 4 5 5 5 5 2 4 6 6 2 6 6 2 2 6 2 2 2 2 6 2 3 2 2 3 6 3 2 2 3 4 4 4 4 5 5 4 3 3 6 2 6 2 2 2 6 3 2 2 2 2 5 5 4 4 4 4 3 6 2 6 6 2 6 2 6 2 2 3 3 4 4 5 4 4 4 4 4 3 6 2 6 2 2 2 6 2 2 2 2 2 2 2 3 4 4 4 4 5 4 4 4 3 2 2 2 6 6 6 2 6 2 6 2 6 2 2 2 2 2 2 2
每一行都是单独的产品,并且需要及时列出这些产品。我用过这段代码
from pybrain.tools.shortcuts import buildNetwork
from pybrain.supervised.trainers import BackpropTrainer
from pybrain.datasets import SequentialDataSet
from pybrain.structure import SigmoidLayer
from pybrain.structure import LSTMLayer
import itertools
import numpy as np
data = np.loadtxt("sales").T
print data
datain = data[:-1,:]
dataout = data[1:,:]
INPUTS = 5
OUTPUTS = 5
HIDDEN = 40
net = buildNetwork(INPUTS, HIDDEN, OUTPUTS, hiddenclass=LSTMLayer, outclass=SigmoidLayer, recurrent=True)
ds = SequentialDataSet(INPUTS, OUTPUTS)
for x,y in itertools.izip(datain,dataout):
ds.newSequence()
ds.appendLinked(tuple(x), tuple(y))
net.randomize()
trainer = BackpropTrainer(net, ds)
for _ in range(1000):
print trainer.train()
错误在245.xx左右徘徊,小数点后的数字有所改善,但是errordoes的整数部分没有降低。这种方法看起来有效吗?我只想和PyBrain / NN专家核实,看我没做错什么。
更正:显然,从PDF文件复制时,数据已损坏。上面分享了正确的数据。我再说一遍,数据很糟糕。使用正确的数据,NN代码(也是共享的)将从错误率5.9807501187开始,并逐渐下降。对于我可能造成的混乱,我感到非常抱歉。
答案 0 :(得分:2)
尝试在每次迭代时绘制火车错误。如果方法有效,那么它应该在每一步都下降。您还试过添加偏见吗?
buildNetwork(INPUTS, HIDDEN, OUTPUTS, hiddenclass=LSTMLayer, outclass=SigmoidLayer, recurrent=True, bias=True)
你从哪里得到错误?这是训练师报告的吗?那么这是训练集上的错误,你会受到高度偏见的影响。可能会有所帮助的事情: