我想评估解决N皇后问题的各种方法的性能比较。主要是基于AI元启发式算法的算法,如模拟退火,禁忌搜索和遗传算法等,与精确方法(如回溯)相比较。有没有可用于研究的代码?许多现实世界的优化问题都考虑了精确方法和元启发式之间的合作方案。
答案 0 :(得分:0)
几年前我在大学时不得不用Java编写一个n-queens求解器。我不确定您正在寻找什么类型的源代码,但如果它有任何帮助,那么这个程序的代码。它并没有真正优化,只是一个非常简单的递归算法。我写这是我大学的第一个学期,所以原谅初学者的错误:-)我把大部分的块评论都拿走了,但希望你能用我留下的那些来理解它。如果你想要一些专业的源代码而不是也许做谷歌搜索?我知道维基百科有一些不错的文章和伪代码。希望这有帮助!
import java.util.Scanner;
public class QueensSolver
{
public static void main(String args[])
{
System.out.println("Please enter the size of the chessboard: ");
Scanner stdin = new Scanner(System.in);
int sizeOfBoard = stdin.nextInt();
//Create the board to the given size.
char[][] board = new char[sizeOfBoard][sizeOfBoard];
//fill board with hyphens
for(int row=0; row<sizeOfBoard; row++)
{
for(int col=0; col<sizeOfBoard; col++)
{
board[row][col] = '-';
}
}
//Call the method which attempts to solve the problem
if(solve(sizeOfBoard, board, 0))
{ //if true, we know that the board array contains a solution
printBoard(sizeOfBoard, board);
}
else
{ //if false, we know that no solutions exist on this size of board
System.out.println("No solutions are possible with this board size.");
}
}
public static boolean solve(int sizeOfBoard, char[][] board, int row)
{
//If all rows have been filled, we have a solution
if(row>=sizeOfBoard)
{
return true;
}
//For each column(space) on the given row
for(int col=0; col<sizeOfBoard; col++)
{
//If placing a queen in this column(space) does not cause a conflict
if(!checkConflict(sizeOfBoard, board, row, col))
{
//place a queen here
board[row][col]='Q';
//then call this same function on the next row
boolean success = solve(sizeOfBoard, board, row+1);
//if every function in this recursive path returns true
if(success)
{
//then we return true also
return true;
}
//If there is no possible solution with this queen placement,
//then we replace the queen with an empty and attempt
//to place a queen in the next column(space).
else
{
board[row][col]='-';
}
}
}
return false;
}
public static boolean checkConflict(int sizeOfBoard, char[][] board, int rowCheck, int colCheck)
{
//Check for queens placed directly above this position
for(int row = rowCheck-1; row>=0; row--)
{
if(board[row][colCheck]=='Q')
{
return true;
}
}
//Check for queens placed on the diagonal
//above and to the right of this position
int col = colCheck+1;
for(int row = rowCheck-1; row>=0; row--)
{
if(col>=sizeOfBoard)
{
break;
}
if(board[row][col]=='Q')
{
return true;
}
col++;
}
//Check for queens placed on the diagonal
//above and to the left of this position
col = colCheck-1;
for(int row = rowCheck-1; row>=0; row--)
{
if(col<0)
{
break;
}
if(board[row][col]=='Q')
{
return true;
}
col--;
}
//We know that no conflicts are caused by this position, so return false
return false;
}
public static void printBoard(int sizeOfBoard, char[][] board)
{
for(int row=0; row<sizeOfBoard; row++)
{
for(int col=0; col<sizeOfBoard; col++)
{
System.out.print(board[row][col]);
}
System.out.print("\n");
}
}
}
答案 1 :(得分:0)
我真的没有得到你的问题(你想知道算法的理论吗?所以你想看代码吗?),但我愿意分享我从野外改编的代码。它是蟒蛇,非常酷。我改变它使用迭代器,奇迹般地,它仍然有效。
# I can't really claim much credit for this implementation.
# I found this on the web and I converted it to use python generators.
# Adapted from:
# http://en.wikibooks.org/wiki/Algorithm_implementation/Miscellaneous/N-Queens
def queensproblem(solution, rows, columns):
def add_one_queen(new_row, columns, solution):
for new_column in range(columns):
if not conflict(new_row, new_column, solution):
yield new_column
def conflict(new_row, new_column, solution):
return any(solution[row] == new_column or
solution[row] + row == new_column + new_row or
solution[row] - row == new_column - new_row
for row in range(new_row))
if len(solution) == rows:
yield solution
else :
for row in range(len(solution), rows):
for col in add_one_queen(row, columns, solution):
for x in queensproblem(solution + [col], rows, columns):
yield x
else:
break
if __name__ == '__main__':
for i,solution in enumerate(queensproblem([], 8, 8)):
print i, solution
答案 2 :(得分:0)
Python标准库的文件test/test_generators.py
中存在一种很好的方法。查看Queens课程。
如果您的计算机中未安装Python,则可以在线浏览该文件here。
答案 3 :(得分:0)
Drools求解器对你来说很有意思。特别是chapter 1 of the documentation。
答案 4 :(得分:0)
这不是最快的方案实现,但它非常简洁。我确实独立提出了它,但我怀疑它是独一无二的。它在PLT Scheme中,因此需要更改某些函数名称以使其在R6RS中运行。解决方案列表和每个解决方案都是有缺点的,所以它们是相反的。最后的反转和贴图重新排序所有内容,并为解决方案添加行以获得漂亮的输出。大多数语言都有折叠类型功能,请参阅:
http://en.wikipedia.org/wiki/Fold_%28higher-order_function%29
#lang scheme/base
(define (N-Queens N)
(define (attacks? delta-row column solution)
(and (not (null? solution))
(or (= delta-row (abs (- column (car solution))))
(attacks? (add1 delta-row) column (cdr solution)))))
(define (next-queen safe-columns solution solutions)
(if (null? safe-columns)
(cons solution solutions)
(let move-queen ((columns safe-columns) (new-solutions solutions))
(if (null? columns) new-solutions
(move-queen
(cdr columns)
(if (attacks? 1 (car columns) solution) new-solutions
(next-queen (remq (car columns) safe-columns)
(cons (car columns) solution)
new-solutions)))))))
(unless (exact-positive-integer? N)
(raise-type-error 'N-Queens "exact-positive-integer" N))
(let ((rows (build-list N (λ (row) (add1 row)))))
(reverse (map (λ (columns) (map cons rows (reverse columns)))
(next-queen (build-list N (λ (i) (add1 i))) null null)))))