我有
struct sigaction pipe_act;
pipe_act.sa_flags = SA_SIGINFO;
pipe_act.sa_sigaction = sigpipehandler
sigaction(SIGPIPE, &pipe_act, NULL);
当我尝试编写sigpipeHandler时,gcc告诉我它需要三个args。第二个args是好的,它的siginfo_t结构包含有关signal的信息,bue是第一个和第三个(int和void变量),它们是什么?
答案 0 :(得分:7)
sigaction
的男人说:
The sigaction structure is defined as something like: struct sigaction { void (*sa_handler)(int); void (*sa_sigaction)(int, siginfo_t *, void *); sigset_t sa_mask; int sa_flags; void (*sa_restorer)(void); }; sa_handler specifies the action to be associated with signum and may be SIG_DFL for the default action, SIG_IGN to ignore this signal, or a pointer to a signal handling function. This function receives the sig‐ nal number as its only argument. If SA_SIGINFO is specified in sa_flags, then sa_sigaction (instead of sa_handler) specifies the signal-handling function for signum. This function receives the signal number as its first argument, a pointer to a siginfo_t as its second argument and a pointer to a ucontext_t (cast to void *) as its third argument. ....
The siginfo_t argument to sa_sigaction is a struct with the following elements:
siginfo_t { int si_signo; /* Signal number */ int si_errno; /* An errno value */ int si_code; /* Signal code */ int si_trapno; /* Trap number that caused hardware-generated signal (unused on most architectures) */ pid_t si_pid; /* Sending process ID */ uid_t si_uid; /* Real user ID of sending process */ int si_status; /* Exit value or signal */ clock_t si_utime; /* User time consumed */ clock_t si_stime; /* System time consumed */ sigval_t si_value; /* Signal value */ int si_int; /* POSIX.1b signal */ void *si_ptr; /* POSIX.1b signal */ int si_overrun; /* Timer overrun count; POSIX.1b timers */ int si_timerid; /* Timer ID; POSIX.1b timers */ void *si_addr; /* Memory location which caused fault */ long si_band; /* Band event (was int in glibc 2.3.2 and earlier) */ int si_fd; /* File descriptor */ short si_addr_lsb; /* Least significant bit of address (since kernel 2.6.32) */ }
答案 1 :(得分:5)
第一个参数是信号编号。这是必需的,因为您可以对几个不同的信号使用相同的处理程序。
第三个参数包含接收信号时使用的上下文。可以通过makecontext()/setcontext()/getcontext()/swapcontext()
函数使用上下文来实现用户空间线程。上下文结构还包含非便携式体系结构特定信息,例如,收到信号时处理器寄存器的值。处理器状态混乱需要您自担风险。