我在openCV代码中做了一个简单的kmean聚类。它运行成功,但是当我使用valgrind检查它有内存问题时:
== 6982 ==有条件的跳跃或移动取决于未初始化的值(s)
创建的
== 6982 ==未初始化的值是由堆分配
这是简单的代码,其中输入图像'obs'被堆叠到大矩阵'samples'中然后我称之为kmean内置函数
/*GETINITKMEANS: calculate initial kmeans segmentation (lev,img)
obs: input image
levels: array holding intensity levels
hh: height
ww: width of image
nlevels:number of levels
lev: holds segmentation labels
img: holds segmentation reconstruction
*/
void getinitkmeans(Mat &obs,Mat &lev,Mat &img,vector<UINT8>& levels,int hh,int ww,int nlevels)
{
int dim=hh*ww;
// data for kmeans
Mat samples(dim,3,CV_32F,Scalar(0));
Mat labels(dim,1,CV_8U,Scalar(0));
Mat centers(nlevels,3,CV_32F,Scalar(0));
// extract bgr pixel values into samples matrix
for (int i=0;i<hh;i++)
{
for (int j=0;j<ww;j++)
{
samples.at<float>(i*ww+j,0) = (float)obs.at<Vec3b>(i,j)[0];
samples.at<float>(i*ww+j,1) = (float)obs.at<Vec3b>(i,j)[1];
samples.at<float>(i*ww+j,2) = (float)obs.at<Vec3b>(i,j)[2];
}
}
// run kmeans algorithm
kmeans(samples,nlevels,labels,cv::TermCriteria(CV_TERMCRIT_ITER,30,0),1,KMEANS_RANDOM_CENTERS,centers);
// construct lev, img
for (int i=0;i<hh;i++)
{
for (int j=0;j<ww;j++)
{
lev.at<UINT8>(i,j) = labels.at<int>(i*ww+j,0);
img.at<UINT8>(i,j) = levels[labels.at<int>(i*ww+j,0)];
}
}
}