我把这作为面试问题......
无限数组,它是从某个位置排序的(我们不知道位置)只有特殊符号'$',我们需要在那个数组中找到一个元素......
我给出了一个解决方案,比如获得$的第一次出现,然后在$
的前一部分进行二元搜索找到第一次出现$ i给出了像窗口大小增量的解决方案if(i,2i)
我给的代码是
#include<stdio.h>
int first(int *arr,int start,int end,int index)
{
int mid=(start+end)/2;
if((mid==start||arr[mid-1] != '$') && arr[mid]=='$')
return mid;
if(arr[mid]=='$')
return first(arr,start,mid-1,index);
else
{
if(arr[end] =='$')
return first(arr,mid+1,end,index);
else
return first(arr,end+1,(1<<index),index+1);
}
}
int binsearch(int *arr,int end ,int n)
{
int low,high,mid;
high=end-1;
low=0;
while(low<= high)
{
mid=(low+high)/2;
if(n<arr[mid])
high=mid-1;
else if (n >arr[mid])
low=mid+1;
else
return mid;
}
return -1;
}
int main()
{
int arr[20]={1,2,3,4,5,6,7,8,9,10,'$','$','$','$','$','$','$','$','$','$'};
int i =first(arr,0,2,2);
printf("first occurance of $ is %d\n",i);
int n=20;//n is required element to be found
if(i==0||arr[i-1]<n)
printf(" element %d not found",n);
else{
int p=binsearch(arr,i,n);
if(p != -1)
printf("element %d is found at index %d",n,p);
else
printf(" element %d not found",n);
}
return 0;
}
有没有更好的方法来解决上述问题?
而且我也想知道找到第一次出现$为什么我们应该仅以2的幂移动窗口为什么不是3(i,3i)
有人可以通过关于复发关系的一些解释来帮助......
答案 0 :(得分:3)
似乎是对我这样做的好方法。作为一项小规模优化,当您的任何数字大于您要搜索的数字时,您可以停止first
例程(不只是$
)。
以2的幂增长窗口意味着您将在log_2(n)
次迭代中找到结束。因子3的增长意味着你会在log_3(n)
迭代中找到它,这个迭代更小。但不是渐近变小,如O(log_2(n)) == O(log_3(n))
。无论如何,您的二进制搜索将采取log_2(n)
步骤,因此更快地使first
部分无法帮助您的大O运行时间。
答案 1 :(得分:0)
迭代格式的第一个函数的有效部分是
private int searchNum(int[] arr, int num, int start, int end) {
int index = 0;
boolean found = false;
for (int i = 0; i < arr.length; i = 1 << index) {
if (start + i < arr.length) {
if (arr[start] <= num && arr[start + i] >= num) {
found = true;
return bsearch(arr, num, start, start + i);
} else {
start = start + i;
}
} else {
return bsearch(arr, num, start, arr.length - 1);
}
}
return 0;
}
这不会让你第一次出现,而是试图直接找到数字,因为在你的情况下,你错过了在找到$符号之前找到数字本身的可能性。所以最坏的情况复杂性是O(logn).. 最好的情况是(1) 之后你将其传递给
private int bsearch(int[] array, int search, int first, int last) {
int middle = (first + last) / 2;
while (first <= last) {
if (array[middle] < search)
first = middle + 1;
else if (array[middle] == search) {
System.out.println(search + " found at location "
+ (middle + 1) + ".");
return middle;
} else
last = middle - 1;
middle = (first + last) / 2;
}
if (first > last)
System.out.println(search + " is not present in the list.\n");
return -1;
}
调用函数
if ((pos = searchNum(arr, num, 0, 2)) != -1) {
System.out.println("found @ " + pos);
} else {
System.out.println("not found");
}
答案 2 :(得分:0)
这是python解决方案。
arr = [3,5,7,9,10,90,100,130,140,160,170,171,172,173,174,175,176]
elm = 171
k = 0
while (True):
try:
i = (1 << k) - 1 # same as 2**k - 1 # eg 0,1,3,7,15
# print k
if(arr[i] == elm):
print "found at " + str(i)
exit()
elif( arr[i] > elm):
break
except Exception as e:
break
k = k+1
begin = 2**(k-1) # go back to previous power of 2
end = 2**k -1
# Binary search
while (begin <= end):
mid = begin + (end-begin)/2
try:
if(arr[mid] == elm):
print "found at " + str(mid)
exit()
elif(arr[mid] > elm):
end = mid-1
else:
begin = mid+1
except Exception as e:
# Exception can occur if you are trying to access min element and that is not available. hence set end to mid-1
end = mid-1
print "Element not found"