从JSON
导入可以获得非常复杂的嵌套结构。
例如:
{u'body': [{u'declarations': [{u'id': {u'name': u'i',
u'type': u'Identifier'},
u'init': {u'type': u'Literal', u'value': 2},
u'type': u'VariableDeclarator'}],
u'kind': u'var',
u'type': u'VariableDeclaration'},
{u'declarations': [{u'id': {u'name': u'j',
u'type': u'Identifier'},
u'init': {u'type': u'Literal', u'value': 4},
u'type': u'VariableDeclarator'}],
u'kind': u'var',
u'type': u'VariableDeclaration'},
{u'declarations': [{u'id': {u'name': u'answer',
u'type': u'Identifier'},
u'init': {u'left': {u'name': u'i',
u'type': u'Identifier'},
u'operator': u'*',
u'right': {u'name': u'j',
u'type': u'Identifier'},
u'type': u'BinaryExpression'},
u'type': u'VariableDeclarator'}],
u'kind': u'var',
u'type': u'VariableDeclaration'}],
u'type': u'Program'}
如上所述,推荐复杂结构的推荐方法是什么?
除了一些列表,主要是字典,结构可以变得更加重叠,所以我需要一个通用的解决方案。
答案 0 :(得分:43)
您可以使用递归生成器将字典转换为平面列表。
def dict_generator(indict, pre=None):
pre = pre[:] if pre else []
if isinstance(indict, dict):
for key, value in indict.items():
if isinstance(value, dict):
for d in dict_generator(value, [key] + pre):
yield d
elif isinstance(value, list) or isinstance(value, tuple):
for v in value:
for d in dict_generator(v, [key] + pre):
yield d
else:
yield pre + [key, value]
else:
yield indict
返回
[u'body', u'kind', u'var']
[u'init', u'declarations', u'body', u'type', u'Literal']
[u'init', u'declarations', u'body', u'value', 2]
[u'declarations', u'body', u'type', u'VariableDeclarator']
[u'id', u'declarations', u'body', u'type', u'Identifier']
[u'id', u'declarations', u'body', u'name', u'i']
[u'body', u'type', u'VariableDeclaration']
[u'body', u'kind', u'var']
[u'init', u'declarations', u'body', u'type', u'Literal']
[u'init', u'declarations', u'body', u'value', 4]
[u'declarations', u'body', u'type', u'VariableDeclarator']
[u'id', u'declarations', u'body', u'type', u'Identifier']
[u'id', u'declarations', u'body', u'name', u'j']
[u'body', u'type', u'VariableDeclaration']
[u'body', u'kind', u'var']
[u'init', u'declarations', u'body', u'operator', u'*']
[u'right', u'init', u'declarations', u'body', u'type', u'Identifier']
[u'right', u'init', u'declarations', u'body', u'name', u'j']
[u'init', u'declarations', u'body', u'type', u'BinaryExpression']
[u'left', u'init', u'declarations', u'body', u'type', u'Identifier']
[u'left', u'init', u'declarations', u'body', u'name', u'i']
[u'declarations', u'body', u'type', u'VariableDeclarator']
[u'id', u'declarations', u'body', u'type', u'Identifier']
[u'id', u'declarations', u'body', u'name', u'answer']
[u'body', u'type', u'VariableDeclaration']
[u'type', u'Program']
答案 1 :(得分:41)
如果你只需要走字典,我建议使用一个递归的walk
函数,它接受一个字典,然后递归遍历它的元素。像这样:
def walk(node):
for key, item in node.items():
if item is a collection:
walk(item)
else:
It is a leaf, do your thing
如果您还想搜索元素或查询通过某些条件的多个元素,请查看jsonpath模块。
答案 2 :(得分:8)
您可以从标准库json
模块扩展编码器和解码器,而不是编写自己的解析器,具体取决于任务。
我推荐这个,特别是如果你需要将属于自定义类的对象编码到json中。如果你必须在json的字符串表示上做一些操作,也可以考虑迭代JSONEncoder()。iterencode
两者的引用均为http://docs.python.org/2/library/json.html#encoders-and-decoders
答案 3 :(得分:5)
如果您知道数据的含义,则可能需要创建parse
函数以将嵌套容器转换为自定义类型对象树。然后,您可以使用这些自定义对象的方法来执行您需要处理的任何数据。
对于您的示例数据结构,您可以创建Program
,VariableDeclaration
,VariableDeclarator
,Identifier
,Literal
和BinaryExpression
类,然后对你的解析器使用这样的东西:
def parse(d):
t = d[u"type"]
if t == u"Program":
body = [parse(block) for block in d[u"body"]]
return Program(body)
else if t == u"VariableDeclaration":
kind = d[u"kind"]
declarations = [parse(declaration) for declaration in d[u"declarations"]]
return VariableDeclaration(kind, declarations)
else if t == u"VariableDeclarator":
id = parse(d[u"id"])
init = parse(d[u"init"])
return VariableDeclarator(id, init)
else if t == u"Identifier":
return Identifier(d[u"name"])
else if t == u"Literal":
return Literal(d[u"value"])
else if t == u"BinaryExpression":
operator = d[u"operator"]
left = parse(d[u"left"])
right = parse(d[u"right"])
return BinaryExpression(operator, left, right)
else:
raise ValueError("Invalid data structure.")
答案 4 :(得分:4)
也许可以提供帮助:
def walk(d):
global path
for k,v in d.items():
if isinstance(v, str) or isinstance(v, int) or isinstance(v, float):
path.append(k)
print "{}={}".format(".".join(path), v)
path.pop()
elif v is None:
path.append(k)
## do something special
path.pop()
elif isinstance(v, dict):
path.append(k)
walk(v)
path.pop()
else:
print "###Type {} not recognized: {}.{}={}".format(type(v), ".".join(path),k, v)
mydict = {'Other': {'Stuff': {'Here': {'Key': 'Value'}}}, 'root1': {'address': {'country': 'Brazil', 'city': 'Sao', 'x': 'Pinheiros'}, 'surname': 'Fabiano', 'name': 'Silos', 'height': 1.9}, 'root2': {'address': {'country': 'Brazil', 'detail': {'neighbourhood': 'Central'}, 'city': 'Recife'}, 'surname': 'My', 'name': 'Friend', 'height': 1.78}}
path = []
walk(mydict)
会产生这样的输出:
Other.Stuff.Here.Key=Value
root1.height=1.9
root1.surname=Fabiano
root1.name=Silos
root1.address.country=Brazil
root1.address.x=Pinheiros
root1.address.city=Sao
root2.height=1.78
root2.surname=My
root2.name=Friend
root2.address.country=Brazil
root2.address.detail.neighbourhood=Central
root2.address.city=Recife
答案 5 :(得分:2)
如果接受的答案对您有用,但是您还想要一条完整的,有序的路径,其中包括嵌套数组的数字索引,那么这种细微的变化将起作用:
TCP_DEFER_ACCEPT
答案 6 :(得分:1)
上述解决方案的一些补充(用于处理包含列表的json)
#!/usr/bin/env python
import json
def walk(d):
global path
for k,v in d.items():
if isinstance(v, str) or isinstance(v, int) or isinstance(v, float):
path.append(k)
print("{}={}".format(".".join(path), v))
path.pop()
elif v is None:
path.append(k)
# do something special
path.pop()
elif isinstance(v, list):
path.append(k)
for v_int in v:
walk(v_int)
path.pop()
elif isinstance(v, dict):
path.append(k)
walk(v)
path.pop()
else:
print("###Type {} not recognized: {}.{}={}".format(type(v), ".".join(path),k, v))
with open('abc.json') as f:
myjson = json.load(f)
path = []
walk(myjson)
答案 7 :(得分:0)
我比较灵活的版本如下:
def walktree(tree, at=lambda node: not isinstance(node, dict), prefix=(),
flattennode=lambda node:isinstance(node, (list, tuple, set))):
"""
Traverse a tree, and return a iterator of the paths from the root nodes to the leaf nodes.
tree: like '{'a':{'b':1,'c':2}}'
at: a bool function or a int indicates levels num to go down. walktree(tree, at=1) equivalent to tree.items()
flattennode: a bool function to decide whether to iterate at node value
"""
if isinstance(at, int):
isleaf_ = at == 0
isleaf = lambda v: isleaf_
at = at - 1
else:
isleaf = at
if isleaf(tree):
if not flattennode(tree):
yield (*prefix, tree)
else:
for v in tree:
yield from walktree(v, at, prefix, flattennode=flattennode)
else:
for k,v in tree.items():
yield from walktree(v, at, (*prefix, k), flattennode=flattennode)
用法:
> list(walktree({'a':{'b':[0,1],'c':2}, 'd':3}))
[('a', 'b', 0), ('a', 'b', 1), ('a', 'c', 2), ('d', 3)]
> list(walktree({'a':{'b':[0,1],'c':2}, 'd':3}, flattennode=lambda e:False))
[('a', 'b', [0, 1]), ('a', 'c', 2), ('d', 3)]
> list(walktree({'a':{'b':[0,1],'c':2}, 'd':3}, at=1))
[('a', {'b': [0, 1], 'c': 2}), ('d', 3)]
> list(walktree({'a':{'b':[0,{1:9,9:1}],'c':2}, 'd':3}))
[('a', 'b', 0), ('a', 'b', 1, 9), ('a', 'b', 9, 1), ('a', 'c', 2), ('d', 3)]
> list(walktree([1,2,3,[4,5]]))
[(1,), (2,), (3,), (4,), (5,)]