我现在花了一些时间学习reshape2
和plyr
,但我仍然没有得到它。这次我遇到了(a)小计和(b)传递不同聚合函数的问题。这是一个使用a tutorial
# libraries
library(plyr)
library(reshape2)
# get data and add few more variables
book.sales = read.csv("http://news.mrdwab.com/data-booksales")
book.sales$Stock = book.sales$Quantity + 10
book.sales$SubjCat[(book.sales$Subject == 'Economics') |
(book.sales$Subject == 'Management')] <- '1_EconSciences'
book.sales$SubjCat[book.sales$Subject %in%
c('Anthropology', 'Politics', 'Sociology')] <- '2_SocSciences'
book.sales$SubjCat[book.sales$Subject %in% c('Communication', 'Fiction',
'History', 'Research', 'Statistics')] <- '3_other'
# to get to my starting dataframe (close to the project I am working on)
book.sales1 <- ddply(book.sales, c('Region', 'Representative', 'SubjCat',
'Subject', 'Publisher'), summarize,
Stock = sum(Stock), Sold = sum(Quantity),
Ratio = round((100 * sum(Quantity)/sum(Stock)), digits = 1))
#melt it
m.book.sales = melt(data = book.sales1, id.vars = c('Region', 'Representative',
'SubjCat', 'Subject', 'Publisher'),
measured.vars = c('Stock', 'Sold', 'Ratio'))
# cast it --- # Please ignore this cast this was a mistake
# Tab1 <- dcast(data = m.book.sales,
# formula = Region + Representative ~ Publisher + variable,
# fun.aggregate = sum, margins = c('Region', 'Representative'))
Tab1 <- dcast(data = m.book.sales, formula = Region + Representative ~
SubjCat + Subject + variable, fun.aggregate = sum,
margins = c('Region', 'Representative', 'SubjCat', 'Subject'))
现在我的问题:
我已经能够在行中添加小计。但是也可以在列中添加边距。比方说,一个发布者的股票总数?对不起,我的意思是说所有出版商的销售总数。
“比率”列存在问题。如何为此变量获得“mean”而不是“sum”?
请注意:问题一(关于边距小计)可以解决。
P.S。:我看过一些使用reshape
的例子。您是否会建议使用它而不是reshape2
(这似乎不包括两个函数的功能)。
答案 0 :(得分:2)
不确定您对问题1的确切要求,但如果您想要Publisher
的总库存,那么您不会这样做吗?
totalofstock <- ddply(book.sales, ('Publisher'), function(x)
data.frame=c(subtotals = sum(x$Stock)))
如果您想将其添加到Tab1
,请执行以下操作:
Tab1$bloomsburytotalofstock<-totalofstock[1,][[2]]
head(Tab1)
对于问题2,获取mean
而不是sum
肯定会将功能从sum
更改为mean
e.g。
ratiomeans <- ddply(book.sales1, ('Publisher'), function(x)
data.frame=c(ratioMEAN = mean(x$Ratio)))
我还建议坚持使用reshape2
。 reshape2
基本上是reshape
的新版本。据我所知reshape
已不再使用但仍然存在,因此使用reshape
的旧代码的人不必重写所有内容。
修改
justratio<-(m.book.sales[m.book.sales$variable=="Ratio",])
Tab2 <- dcast(data = justratio,
formula = Region + Representative ~ SubjCat + Subject + variable,
fun.aggregate = mean,
margins = c('Region', 'Representative', 'SubjCat', 'Subject'))
final<-merge(Tab1,Tab2,by=c("Region","Representative"))