我在处理引力场中的弹性碰撞时遇到了严重的问题。我试图与能量守恒定律一致地实现这一点,但它出错了,as shown in this video。首先,两个物体粘在一起,碰撞后几百帧,它们达到了很高的速度。
complete code is online here,但负责在碰撞后给出输出速度的方法来自world.py
的这个函数:
def collision(self, obj1, obj2):
R = obj1.radius + obj2.radius # code is used to "jump back in time" to avoid penetration when there's a collision
dx = obj1.x - obj2.x #
dy = obj1.y - obj2.y #
K = math.hypot(dx, dy) #
dvx = obj1.vx - obj2.vx #
dvy = obj1.vy - obj2.vy #
dv = math.hypot(dvx, dvy) #
deltat = (R - K)/dv #
print dv
print deltat
obj1.x = obj1.rect.centerx = obj1.x - obj1.vx # *deltat
obj2.x = obj2.rect.centerx = obj2.x - obj2.vx # *deltat
obj1.y = obj1.rect.centery = obj1.y - obj1.vy # *deltat
obj2.y = obj2.rect.centery = obj2.y - obj2.vy # *deltat
dx = obj2.x - obj1.x
dy = obj2.y - obj1.x
delta = math.hypot(dx, dy)
nx = dx/delta
ny = dy/delta
vx1bc = obj1.vx * nx
vx2bc = obj2.vx * nx
vy1bc = obj1.vy * ny
vy2bc = obj2.vy * ny
vx2ac = (obj2["energy_loss"]*(vx1bc - vx2bc) + vx1bc + (obj2["mass"]/obj1["mass"]*vx2bc))/((obj2["mass"]/obj1["mass"])+1)
vy2ac = (obj2["energy_loss"]*(vy1bc - vy2bc) + vy1bc + (obj2["mass"]/obj1["mass"]*vy2bc))/((obj2["mass"]/obj1["mass"])+1)
vx1ac = (vx1bc + obj2["mass"]/obj1["mass"]*vx2bc - obj2["mass"]/obj1["mass"]*vx2ac)*obj1["energy_loss"]
vy1ac = (vy1bc + obj2["mass"]/obj1["mass"]*vy2bc - obj2["mass"]/obj1["mass"]*vy2ac)*obj1["energy_loss"]
V1cx = obj1.vx * ny
V1cy = obj1.vy * ny
V2cx = obj2.vx * ny
V2cy = obj2.vy * ny
alfa = math.atan2(ny, nx)
alfa_deg = math.degrees(alfa)
v1a = math.hypot(vx1ac, vy1ac)
v2a = math.hypot(vx2ac, vy2ac)
obj1.vx = v1a*math.cos(alfa)+V1cx * math.sin(alfa)
obj2.vx = v2a*math.cos(alfa)+V2cx * math.sin(alfa)
obj1.vy = v1a*math.sin(alfa)+V1cx * math.cos(alfa)
obj2.vy = v2a*math.sin(alfa)+V2cx * math.cos(alfa)