我注意到$ near和$ nearSphere返回完全不同的数据,我怀疑。毕竟,当纬度接近赤道时,球距离与欧氏距离的差别不大。
db.tablebusiness.find({ "LongitudeLatitude" : { "$nearSphere" : [106.772835, -6.186753], "$maxDistance" : 0.053980478460939611 }, "Prominent" : { "$gte" : 15 }, "indexContents" : { "$all" : [/^soto/, /^nasi/] } }).limit(200);
它返回48个数据。
无论如何我会附上它
/* 0 */
{
"_id" : "nasi-uduk-soto-ayam__-6.18_106.77",
"BuildingID" : null,
"Title" : "Nasi Uduk Soto Ayam",
"InBuildingAddress" : null,
"Building" : null,
"Street" : "Jl. Panjang",
"Districts" : [],
"City" : "Jakarta",
"Country" : "Indonesia",
"LongitudeLatitudeFromGoogle" : null,
"DistanceFromGoogleAddress" : 0.0,
"Checkin" : 0,
"Note" : null,
"PeopleCount" : 0,
"Prominent" : 45.5,
"CountViews" : 0,
"StreetAdditional" : null,
"LongitudeLatitude" : {
"Longitude" : 106.765673160553,
"Latitude" : -6.17522230915668
},
"Rating" : {
"Stars" : 0.0,
"Weight" : 0.0
},
"CurrentlyWorkedURL" : null,
"Reviews" : [],
"ZIP" : null,
"Tags" : ["Restaurant"],
"Phones" : [],
"Website" : null,
"Email" : null,
"Price" : null,
"openingHour" : null,
"Promotions" : [],
"SomethingWrong" : false,
"BizMenus" : [],
"Brochures" : [],
"Aliases" : [],
"indexContents" : ["restaura", "estauran", "staurant", "taurant", "aurant", "urant", "rant", "ant", "nt", "t", "nasi", "asi", "si", "i", "uduk", "duk", "uk", "k", "soto", "oto", "to", "o", "ayam", "yam", "am", "m"]
}
/* 1 */
{
"_id" : "nasi-soto-padang_pasar-slipi-jaya_-6.19_106.80",
"BuildingID" : null,
"Title" : "Nasi Soto Padang",
"InBuildingAddress" : "Lt.1 Los Alas",
"Building" : null,
"Street" : "Jl.Kemanggisan Utama Raya",
"Districts" : [],
"City" : "Jakarta",
"Country" : "Indonesia",
"LongitudeLatitudeFromGoogle" : null,
"DistanceFromGoogleAddress" : 0.0,
"Checkin" : 0,
"Note" : null,
"PeopleCount" : 0,
"Prominent" : 45.5,
"CountViews" : 0,
"StreetAdditional" : null,
"LongitudeLatitude" : {
"Longitude" : 106.79647564888,
"Latitude" : -6.18998465381734
},
"Rating" : {
"Stars" : 0.0,
"Weight" : 0.0
},
"CurrentlyWorkedURL" : null,
"Reviews" : [],
"ZIP" : null,
"Tags" : ["Restaurant"],
"Phones" : [],
"Website" : null,
"Email" : null,
"Price" : null,
"openingHour" : null,
"Promotions" : [],
"SomethingWrong" : false,
"BizMenus" : [],
"Brochures" : [],
"Aliases" : [],
"indexContents" : ["restaura", "estauran", "staurant", "taurant", "aurant", "urant", "rant", "ant", "nt", "t", "nasi", "asi", "si", "i", "soto", "oto", "to", "o", "padang", "adang", "dang", "ang", "ng", "g"]
}
...
/* 47 */
{
"_id" : "nasi-gandul__-7.43_109.24",
"BuildingID" : null,
"Title" : "Nasi Gandul",
"InBuildingAddress" : null,
"Building" : null,
"Street" : "Jl. Brobahan Pr - 40 rt 004 Rw 004",
"Districts" : [],
"City" : "Purwokerto",
"Country" : "Indonesia",
"LongitudeLatitudeFromGoogle" : null,
"DistanceFromGoogleAddress" : 0.0,
"Checkin" : 0,
"Note" : null,
"PeopleCount" : 0,
"Prominent" : 30.5,
"CountViews" : 0,
"StreetAdditional" : null,
"LongitudeLatitude" : {
"Longitude" : 109.239182174206,
"Latitude" : -7.42585664273589
},
"Rating" : {
"Stars" : 3.0,
"Weight" : 1.0
},
"CurrentlyWorkedURL" : null,
"Reviews" : [],
"ZIP" : "53116",
"Tags" : ["Angkringan", "Restaurant Indonesian", "Soto & Sop"],
"Phones" : ["+62(281)7918181"],
"Website" : null,
"Email" : null,
"Price" : null,
"openingHour" : null,
"Promotions" : [],
"SomethingWrong" : false,
"BizMenus" : [],
"Brochures" : [],
"Aliases" : [],
"indexContents" : ["angkring", "ngkringa", "gkringan", "kringan", "ringan", "ingan", "ngan", "gan", "an", "n", "restaura", "estauran", "staurant", "taurant", "aurant", "urant", "rant", "ant", "nt", "t", "indonesi", "ndonesia", "donesian", "onesian", "nesian", "esian", "sian", "ian", "soto", "oto", "to", "o", "&", "sop", "op", "p", "nasi", "asi", "si", "i", "gandul", "andul", "ndul", "dul", "ul", "l"]
}
我将数据放入excel并使用此公式计算距离
= SQRT(POWER(E2- $ G $ 1,2)+ POWER((F2- $ H $ 1)* COS($ H $ 1 * PI()/ 180),2))
那个人应该大致接近球距。还要注意纬度是-6,离赤道不远。
结果如下
0.013516826
0.023857967
0.037658667
0.038737146
0.042414787
0.046725248
0.051006427
0.053567221
0.057448344
0.061592999
0.062329244
0.065276161
0.066035611
0.076251787
0.109671831
0.112097201
0.13417281
0.136471939
0.172293693
1.058802838
1.078123028
1.079160684
1.080954023
1.081148114
1.081099449
1.092061283
1.094281476
1.094431917
1.096845722
1.097063729
1.096953691
1.097201996
1.105389179
1.105442127
1.10839237
1.108717834
1.108840349
1.111636423
1.113187903
1.118767984
1.118767984
1.133952371
1.135077548
1.154967917
1.161142923
1.185994885
1.199509086
2.756884824
以下是我的Excel工作表
的屏幕截图这是实际的excel
106.772835 -6.186753
"_id" "nasi-uduk-soto-ayam__-6.18_106.77", 106.7656732 -6.175222309 0.013516826
"_id" "nasi-soto-padang_pasar-slipi-jaya_-6.19_106.80", 106.7964756 -6.189984654 0.023857967
"_id" "nasi-uduk-soto-ayam__-6.22_106.77", 106.7718959 -6.224620499 0.037658667
"_id" "nasi-campur-%26-soto-babat-kenanga_komp.-ruko-permata-senayan%2C_-6.22_106.79", 106.79199 -6.22062 0.038737146
"_id" "soto-mie-nasi_indomaret-(univ.-mercu-buana)_-6.21_106.74", 106.7379928 -6.211082144 0.042414787
"_id" "soto-kudus%2C-soto-ayam-%26amp%3B-nasi-pindang_plaza-senayan_-6.23_106.80", 106.7989969 -6.225694167 0.046725248
"_id" "soto-kudus%2C-soto-ayam-%26amp%3B-nasi-pindang_plaza-bri-ii_-6.22_106.81", 106.8136847 -6.217476287 0.051006427
"_id" "soto-kudus%2C-soto-ayam-%26amp%3B-nasi-pindang_automall-indonesia_-6.23_106.81", 106.8096431 -6.225898946 0.053567221
"_id" "soto-kudus%2C-soto-ayam-%26amp%3B-nasi-pindang_menara-mulia_-6.22_106.82", 106.81656 -6.224232983 0.057448344
"_id" "nasi-gule-gandaria__-6.24_106.80", 106.795285 -6.244444863 0.061592999
"_id" "nasi-soto-monggo-mampir__-6.24_106.80", 106.7971516 -6.244479441 0.062329244
"_id" "nasi-soto-ayam-\"pak-min\"__-6.24_106.82", 106.8151546 -6.236743573 0.065276161
"_id" "nasi-soto-ayam-pak-min---santa__-6.24_106.81", 106.812959 -6.239508 0.066035611
"_id" "soto-mie-nasi-bogor__-6.23_106.83", 106.8322349 -6.234845139 0.076251787
"_id" "nasi-uduk-soto-ayam__-6.24_106.87", 106.8693781 -6.239089942 0.109671831
"_id" "soto-ayam-%2F-nasi-uduk-betawi__-6.28_106.71", 106.714092 -6.282785 0.112097201
"_id" "soto-minang-roda-jaya_ruko-tongkol-indah_-6.12_106.89", 106.889044 -6.119294471 0.13417281
"_id" "nasi-bebek-dan-soto-mas-muchlis_summarecon-kelapa-gading_-6.16_106.91", 106.9059021 -6.156281135 0.136471939
"_id" "nasi-liwet-%26-soto-kwali-kalimalang__-6.25_106.93", 106.9338112 -6.248527508 0.172293693
"_id" "soto-ayam-nasi-rames__-6.88_107.58", 107.5751638 -6.881692483 1.058802838
"_id" "nasi-liwet-soto-solo_rumah-mode_-6.88_107.60", 107.5998616 -6.882452292 1.078123028
"_id" "nasi-soto-ayam-madura__-6.91_107.57", 107.5749707 -6.912900474 1.079160684
"_id" "nasi-soto-mie__-6.89_107.60", 107.5969434 -6.890355658 1.080954023
"_id" "nasi-rames-soto-bandung-enjoi__-6.89_107.60", 107.5970721 -6.890504777 1.081148114
"_id" "nasi-soto-ayam__-6.91_107.58", 107.5769877 -6.913560825 1.081099449
"_id" "nasi-soto-ayam__-6.91_107.60", 107.5977552 -6.90656 1.092061283
"_id" "nasi-soto-ayam-madura__-6.89_107.62", 107.6157832 -6.888615935 1.094281476
"_id" "nasi-goreng-soto-ayam__-6.90_107.61", 107.6093245 -6.89662571 1.094431917
"_id" "nasi-soto-gulai-kambing__-6.90_107.61", 107.6090455 -6.900715755 1.096845722
"_id" "putra-bengawan-nasi-goreng-%26-soto__-6.89_107.62", 107.617187 -6.891298 1.097063729
"_id" "nasi-soto-ayam__-6.90_107.61", 107.6088095 -6.901163102 1.096953691
"_id" "nasi-uduk-%26amp%3B-soto-kikil-cak-khohar__-6.89_107.61", 107.6144958 -6.894765295 1.097201996
"_id" "nasi-soto-ayam__-6.90_107.62", 107.6204395 -6.900453028 1.105389179
"_id" "nasi-goreng-soto-ayam__-6.90_107.62", 107.6206326 -6.900303912 1.105442127
"_id" "nasi-soto-ayam-madura__-6.91_107.62", 107.6169634 -6.909279174 1.10839237
"_id" "nasi-soto_pasar-baru_-6.92_107.61", 107.605226 -6.923423387 1.108717834
"_id" "nasi-soto-ayam-madura_pasar-baru_-6.92_107.61", 107.6053333 -6.92348729 1.108840349
"_id" "nasi-soto-sarinah__-6.90_107.63", 107.631175 -6.897282 1.111636423
"_id" "nasi-uduk-soto__-6.89_107.64", 107.6361465 -6.893636262 1.113187903
"_id" "nasi-soto-ayam-madura__-6.91_107.63", 107.629376 -6.910677 1.118767984
"_id" "nasi-soto-ayam__-6.91_107.63", 107.629376 -6.910677 1.118767984
"_id" "nasi-uduk-soto__-6.94_107.62", 107.6248813 -6.93937772 1.133952371
"_id" "nasi-soto-ayam-khas-madura__-6.94_107.63", 107.625749 -6.940099 1.135077548
"_id" "nasi-uduk-%26amp%3B-soto__-6.96_107.64", 107.638936 -6.955310213 1.154967917
"_id" "nasi-soto-ayam_ruko-metro-trade-center_-6.94_107.66", 107.6600504 -6.940208438 1.161142923
"_id" "nasi-soto-ayam-khas-madura__-6.94_107.69", 107.6948118 -6.937141164 1.185994885
"_id" "nasi-soto-ayam-khas-madura-cak-nonk__-6.93_107.72", 107.7156472 -6.932668019 1.199509086
"_id" "nasi-gandul__-7.43_109.24", 109.2391822 -7.425856643 2.756884824
再次查询查询中的术语
"$maxDistance" : 0.053980478460939611
去图。
顺便说一句$ maxDistance是DEFINETLY正确使用的。减少它确实会导致较少的结果。问题似乎来自这样一个事实,即mongodb用于计算距离的公式是不准确的。
答案 0 :(得分:1)
我回复了你在stackexchange上发表的同一篇文章: https://dba.stackexchange.com/questions/23869/nearsphere-returns-too-many-data-what-am-i-missing-am-i-wrong-is-it-a-bug-d
这有帮助吗?
谢谢, 安德鲁