我发现很难理解以下代码片段。我理解指向功能矫揉造成的指针,但我发现混淆在指示的行中。
void qsort(void **v, int left, int right, int (*comp) (void *, void *))
{
int i, last;
void swap(int **v, int i, int j);
if (left >= right) /* do nothing if array contains */
return; /* fewer than two elements */
swap(v, left, (left + right)/2); /* move partition elem */ [1]
last = left; /* to v[0] */ [2]
for (i = left + 1; i <= right; i++) /* partition */ [3]
if ((*comp) (v[i], v[left]) < 0) [4]
swap(v, ++last, i); [5]
swap(v, left, last); /* restore partition elem */ [6]
qsort(v, left, last - 1); [7]
qsort(v, last + 1, right); [8]
}
有人可以向我解释这个例行程序,特别是指示的行,只要告诉我它正在做什么,因为我无法想象这个qsort,我读过的eskimo指南读取k&amp; r说qsort例程是垃圾,而且过于复杂。我只需要理解为什么它是这样写的,因为它对我来说毫无意义。
谢谢,如果没有,请阅读此内容。
答案 0 :(得分:13)
这是一段美丽的代码!
首先,了解quicksort背后的想法非常重要:
1)记下一个数字列表。
2)选择一个,称之为X。
3)制作两个列表,其中一个小于X的所有数字,以及所有数字中较大的一个。
4)对小于X的数字进行排序。对大于X的数字进行排序。
我们的想法是,如果我们幸运并为X选择一个好的值,那么小于X的数字列表与大于X的数字列表的大小相同。如果我们从2 * N + 1个数字开始,然后我们得到两个N个数字列表。每次,我们希望除以2,但我们必须对N个数字进行排序。我们可以将N除以2的次数?那是Log(N)。 所以,我们排序N Log(N)次。这很棒!
至于代码是如何工作的,这里是粗略的,带有一点草图。我们将选择一个小阵列:)
这是我们的数组:[DACBE]
在开始时,左= 0,指向D.右= 4,指向E。
现在,按照代码,使用您的标签:
[1] swap(v,0,2)[DACBE] - &gt; [CADBE]
我们已经将我们选择的值换掉并将其放在数组的开头。
[2] last = 0
这有点聪明......我们想要保留一个计数器,这样我们就知道哪些值更大,哪些更少...你会看到这种进展如何
[3] for(i = 1; i <= 4; i ++)
列表中的所有剩余元素......
[4] if((* comp)(v [i],'C')&lt; 0)
如果i的值低于'C'......
[5] swap(v,++ last,i);
把它放在列表的开头!
让我们运行3,4,5的代码
I = 1:
[CADBE]
if('A'&lt;'C')
交换('A','A')(并且最后增加!)
[CADBE] - &gt; [CADBE](无变化)
最后= 1
I = 2:
[CADBE]
if('D'&lt;'C')
失败。继续前进。
I = 3:
[CADBE]
if('B'&lt;'C')
交换('B','D')并最后增加!
[CADBE] - &gt; [CABDE](看!它正在排序!)
最后= 2
I = 4:
[CABDE]
if('E'&lt;'C')
失败。继续前进。
好的,王牌。所以循环给出的是[CABDE],last = 2('B')
现在行[6] ....交换(左,最后)......那是交换('C','B') [CABDE] - &gt; [BACDE]
现在,这个的神奇之处在于......它已经部分排序了! BA&lt; C&lt; DE!
所以现在我们对子列表进行排序!!
[7] - &gt; [BA] - &gt; [AB]
所以
[BACDE] - &gt; [ABCDE]
[8] - &GT; [DE] - &GT; [DE]
所以
[ABCDE] - &gt; [ABCDE]
我们已经完成了!
答案 1 :(得分:3)
K&amp; R's quick是一个很好的编码示例,但不是快速排序如何工作的一个很好的例子。预先交换的目的不直观,身份互换效率低下且令人困惑。我写了一个程序来帮助澄清这一点。代码注释解释了这些问题。
我只在Linux下进行编译和测试,但Visual Studio应该没有问题这个普通的控制台应用程序。
/***************************** QUICK.CPP *************************************** Author: David McCracken Updated: 2009-08-14 Purpose: This illustrates the operation of the quicksort in K&R "The C Programming Language" (second edition p. 120). Many programmers are frustrated when they attempt to understand quicksort in general from this version, which was clearly not intended as a tutorial on quicksort but on the use of pointers to functions. My program modifies the original to work only on ints in order to focus on the sorting process. It can print the global list and recursive sublist at each change to trace the sorting decision process. My program also clarifies two confusing aspects, both involving unexplained swapping, of the original by comparing its operation to that of two further modified versions. One confusing thing that the original does is to swap an item with itself. The code (modified for ints only) is: last = left; for( i = left+1 ; i <= right ; i++ ) if( v[i] < v[ left ] ) swap( v[ ++last ], v[ i ]); Note that left and v[ left ] are loop-invariant. v[ left ] is the pivot. A superfluous swap is performed on all values less than the pivot without an earlier value greater than the pivot. For example, given sublist (after preswap) 9,8,5,7,4,6, initially i = left + 1, selecting 8. Since this is less than 9, last is incremented to point to the same element as i (selecting 8) and a superfluous swap is performed. At the next iteration, last selects 8 while i selects 5 and 5 is swapped with itself. This continues to the end of the sublist. The sorting function krQuick2 is identical to krQuick but tests ++last against i to avoid superfluous swapping. This certainly yields better performance for practically no cost but, more importantly, helps to clarify just what the code is trying to do, which is to find and swap a value that is larger than the pivot with one that occurs later and is smaller than the pivot. A second source of confusion is the purpose of the preswap, where the midpoint value is swapped with the left-most. Since this is done without regard to value, it cannot decrease entropy. In fact, it does exactly the opposite in the very important case of a sublist that is already sorted, which normally makes quicksort perform badly. This action deliberately unsorts a sorted list and essentially does nothing to an unsorted one. This simple and cheap action substantially improves average and worst case performance, as demonstrated by the third variation, quick3, which just removes the preswap from krQuick2. quick3 demonstrates that the preswap is not required; in fact that any value can be chosen from the list to serve as the pivot. Only in the most unsorted cases does quick3 exhibit slightly better performance than krQuick2 by virture of skipping the preswap. With increasing initial order, the performance of krQuick2 steadily improves over quick3. Some confusion may also come from the testing of v[i] against v[left]. left and v[ left ] are loop-invariant. An optimizing compiler should recognize this and hoist the value out of the loop, but this loop-invariance is not immediately obvious to someone studying this as an example of quicksort. During the swap loop, v[left] serves only to hold the pivot value. An automatic could just as easily hold the value and its purpose would be more clear. However, the code is an example of indirection. We don't know what the list items are but we can be sure that any one of them can fit into v[ left ] and that the swap function can put it there. Thus, the one preswap operation does three things; it randomizes a sorted sublist; it conveniently copies the pivot to a place where it won't be subject to swapping; and it fills the hole in the loop left by extracting the pivot. It does all of this without even knowing what the elements are and with a function that we already have. This amazing programming feat is well worth studying but not in the interest of understanding quicksort. HOW TO USE THIS PROGRAM There are three general variables, the function, the data to be sorted, and what to display. The simplified K&R original function, krQuick, is function 0. Function 1, krQuick2, is krQuick with identity swaps removed. Function 2, quick3, is krQuick2 without preswap. The data to be sorted can be any one of five builtin lists or all of them or a space-delimited list of decimal ints entered on the command line. The displayed information affords a trace of the function's operation. In all cases, the list is displayed before and after sorting, and executing statistics are reported. If SHOW_NOTHING then nothing else is reported. If SHOW_GLOBAL, the changing full list is displayed at each invocation of the recursive sort function. If SHOW_LOCAL1, the sublist passed to the function is displayed before it is modified. If SHOW_LOCAL, the sublist is displayed after each swap. If SHOW_INDEX, the indices involved in swapping and the values at those indices are shown before the swap occurs.These selections correspond to the SHOW_ enum and are culmulative flags. By default, all three functions are applied in succession to all five builtin data lists, with SHOW_NOTHING. This is useful for comparing the performance of the functions. For example, it shows that on the unordered list 11 0 10 1 9 2 8 3 7 4 6 5 quick3 uses 37 compares and 30 swaps while krQuick2 uses 38 compares and 44 swaps. However, on the ordered list 0 1 2 3 4 5 6 7 8 9 10 11 quick3 uses 66 compares and 22 swaps while krQuick2 uses 25 compares and 28 swaps. Command line arguments alter the content but not the order of operation. In all cases, each selected function is applied to all selected data lists. Command arguments are case-insensitive: F function selector, D data selector, and S show what map. Each is followed without space by a single character. F0, F1, F2, FA select function 0, 1, or 2 only or all functions. D0, D1, D2, D3, D4, DA select builtin data list 0, 1, 2, 3, or 4 only or all. S0 (default) shows no extra information. S1 (GLOBAL) shows the full list (without "GLOBAL" legend) at each invocation. S2 (LOCAL1) shows the sublist before processing. S3 (GLOBAL+LOCAL1) S4 (LOCAL) shows the sublist after each swap. It also shows the sublist before processing. S8 (INDEX) shows indices but these would never be shown without at least LOCAL, which can't be combined with 8 in the single-digit argument. SA (All) Note that the Local legend includes a numeric suffix to identify where in the point in the code that is reporting. The most useful S formats are S1, S5, and SA (S0 is default). After any F and S arguments, any space-delimited list of numbers will be taken as the data list. Any D argument is ignored. For example: quick 20 21 15 12 40 0 applies all three functions to the data, reporting only the unsorted and sorted full lists and operational statistics. quick f0 sa 20 21 15 12 40 0 applies only function 0 krQuick to the data, reporting everything. *******************************************************************************/ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <ctype.h> // ======================== DATA AND DECLARATIONS =============================== #define DIM(A) ( sizeof A / sizeof A[0]) typedef unsigned int UINT; enum { SHOW_NOTHING, SHOW_GLOBAL = 1, SHOW_LOCAL1 = 2, SHOW_LOCAL = 4, SHOW_INDEX = 8, SHOW_ALL = 0xFF }; int showWhat = SHOW_NOTHING; int list0[] = { 4,0,2,5,1,3 }; int list1[] = { 0,1,2,3,4,5,6,7,8,9,10,11 }; int list2[] = { 11,10,9,8,7,6,5,4,3,2,1,0 }; int list3[] = { 11,9,7,5,3,1,0,2,4,6,8,10 }; int list4[] = { 11,0,10,1,9,2,8,3,7,4,6,5 }; static struct { int *list; int cnt; } lists[] = { { list0, DIM( list0 )}, { list1, DIM( list1 )}, { list2, DIM( list2 )}, { list3, DIM( list3 )}, { list4, DIM( list4 )}, }; int total[ 1000 ]; int totalCnt; int *userData = 0; int userDataLen = 0; int recursion; // Current recursion level. int calls; // Number of times the sort function is called. int depth; // Maximum recursion level. int swaps; // Count of swaps. int compares; // Count of list item compares. int totCalls; int totDepth; int totCompares; int totSwaps; void (*sortFunc)( int *list, int left, int right ); char dArg = 'A'; // command line argument selects 0,1,2,3,4, or A int dataList; // If dArg is numeric, this is its int value. //============================== FUNCTIONS ===================================== // ------------------------------ indent -------------------------------------- // Print two spaces for each level of recursion to indent subsequent print // output. // ............................................................................ void indent( void ) { for( int indent = 1 ; indent < recursion ; indent++ ) printf( " " ); } // -------------------------------- show --------------------------------------- // Print the given int list according to the global control setting showWhat // and the given local identification. This may print nothing or the global // list or the local sublist. It may or may not print the legend GLOBAL or // LOCALx where x is the local ID, which tells at what point in the sort code // we are showing the sublist. // Returns: Nothing // Arguments: //- int *ia points to the int list. //- int cnt is the number of elements in the list. //- int local tells the local point in the sort routine if greater than 0. 0 // indicates that this is global. In either case, format is controlled by // showWhat. If local is -1, the list is printed unconditionally and without // any legend. // Global: //- showWhat bitmapped control word //-- 0 (SHOW_NOTHING) This is the complete value, not a bit flag. //-- 1 (SHOW_GLOBAL) Print the list if local is 0. If any other bit is also // set, the GLOBAL legend is printed before the list. //-- 2 (SHOW_LOCAL1) Print the list only if local is 1. //-- 3 (SHOW_LOCAL) Print the list if local is 1 or greater. // // ...................... notes ............................................. // SHOW_NOTHING // This exists because the callers don't test showWhat before calling. If we // only want to show the initial unsorted list and final sorted version then // SHOW_NOTHING blocks all print output from the sort function. The control // function calls show with local = -1 to print the list. // .......................................................................... void show( int *ia, int cnt, int local ) { if( local >= 0 ) { switch( showWhat ) { case SHOW_NOTHING: return; case SHOW_GLOBAL: // Only SHOW_GLOBAL if( local > 0 ) return; // This is a local break; // Print list without legend. default: // Some combination of SHOW_GLOBAL, SHOW_LOCAL1, SHOW_LOCAL if( local == 0 ) // global { if( ( showWhat & SHOW_GLOBAL ) == 0 ) return; printf( "GLOBAL " ); } else if( showWhat & SHOW_LOCAL || ( showWhat & SHOW_LOCAL1 && local == 1 )) { indent(); printf( "Local%d: ", local ); } else return; } } for( int *end = ia + cnt ; ia < end ; ia++ ) printf( "%d ", *ia ); putchar( '\n' ); } // -------------------------------- swap --------------------------------------- void swap( int *p1, int *p2 ) { int temp = *p2; *p2 = *p1; *p1 = temp; ++swaps; } // ------------------------------ krQuick -------------------------------------- // K&R's quick function modified to handle only integers and to use inline // numeric comparison instead of an indirect comp function. // ............................................................................. void krQuick( int *list, int left, int right ) { int i, last; ++calls; if( recursion > depth ) depth = recursion; // At first call recursion = 0 and depth is 0, i.e. no recursion yet. ++recursion; show( total, totalCnt, 0 ); // GLOBAL show( list + left, right - left + 1, 1 ); // LOCAL if( left < right ) { swap( list + left, list + (left + right) / 2 ); ++swaps; show( list + left, right - left + 1, 2 ); last = left; for( i = left + 1 ; i <= right ; i++ ) { ++compares; if( list[ i ] < list[ left ]) { if( showWhat & SHOW_INDEX ) { indent(); printf( "i=%d @i=%d left=%d @left=%d last=%d\n", i, list[i], left, list[ left ], last ); } swap( list + ++last, list + i ); show( list + left, right - left + 1, 3 ); ++swaps; } } swap( list + left, list + last ); show( list + left, right - left + 1, 4 ); ++swaps; krQuick( list, left, last - 1 ); krQuick( list, last + 1, right ); } --recursion; } // ------------------------------- krQuick2 ------------------------------------ // K&R's quick function modified as in krQuick plus elimination of identity // swaps. // ............................................................................. void krQuick2( int *list, int left, int right ) { int i, last; ++calls; if( recursion > depth ) depth = recursion; // At first call recursion = 0 and depth is 0, i.e. no recursion yet. ++recursion; show( total, totalCnt, 0 ); // GLOBAL show( list + left, right - left + 1, 1 ); // LOCAL if( left < right ) { swap( list + left, list + (left + right) / 2 ); ++swaps; show( list + left, right - left + 1, 2 ); last = left; for( i = left + 1 ; i <= right ; i++ ) { ++compares; if( list[ i ] < list[ left ] && ++last != i ) { if( showWhat & SHOW_INDEX ) { indent(); printf( "i=%d @i=%d left=%d @left=%d last=%d\n", i, list[i], left, list[ left ], last ); } swap( list + last, list + i ); show( list + left, right - left + 1, 3 ); ++swaps; } } swap( list + left, list + last ); show( list + left, right - left + 1, 4 ); ++swaps; krQuick2( list, left, last - 1 ); krQuick2( list, last + 1, right ); } --recursion; } // ------------------------------------ quick3 --------------------------------- // krQuick2 modified to not do the preswap. In the K&R original, the purpose of // the preswap is to introduce randomness into a presorted sublist. The sorting // result is not changed by eliminating this but the performance degrades with // more compares and swaps in all cases between average and worst. Only near the // best case does eliminating the preswap improve performance. // ............................................................................ void quick3( int *list, int left, int right ) { int i, last; ++calls; if( recursion > depth ) depth = recursion; // At first call recursion = 0 and depth is 0, i.e. no recursion yet. ++recursion; show( total, totalCnt, 0 ); // GLOBAL show( list + left, right - left + 1, 1 ); // LOCAL if( left < right ) { last = left; for( i = left + 1 ; i <= right ; i++ ) { ++compares; if( list[ i ] < list[ left ] && ++last != i ) { if( showWhat & SHOW_INDEX ) { indent(); printf( "i=%d @i=%d left=%d @left=%d last=%d\n", i, list[i], left, list[ left ], last ); } swap( list + last, list + i ); show( list + left, right - left + 1, 3 ); ++swaps; } } swap( list + left, list + last ); show( list + left, right - left + 1, 4 ); ++swaps; quick3( list, left, last - 1 ); quick3( list, last + 1, right ); } --recursion; } static struct { void (*func)( int *list, int left, int right ) ; char *name ; } sortFuncs[] = { { krQuick, (char*)"krQuick" }, { krQuick2, (char*)"krQuick2 (no identity swaps)" }, { quick3, (char*)"quick3 (no preswaps)" } }; // ------------------------------------ sortOne -------------------------------- // Set up performance counters, invoke the currently selected sort on the current // data list, and print the performance (for this one case of selected function // applied to selected data list). // ............................................................................. void sortOne( void ) { recursion = 0; calls = 0; depth = 0; swaps = 0; compares = 0; show( total, totalCnt, -1 ); sortFunc( total, 0, totalCnt - 1 ); show( total, totalCnt, -1 ); printf( "Calls = %d, depth = %d, compares = %d, swaps = %d\n", calls, depth, compares, swaps ); printf( "---------------------------------\n" ); } // ---------------------------- sortOneSet ------------------------------------- // Purpose: Apply the currently selected sort function to one data list. void sortOneSet( int idx ) { if( idx < 0 ) { totalCnt = userDataLen; memcpy( total, userData, totalCnt * sizeof( int )); } else { totalCnt = lists[ idx ].cnt; memcpy( total, lists[ idx ].list, totalCnt * sizeof( int )); } sortOne(); totCalls += calls; totDepth += depth; totCompares += compares; totSwaps += swaps; } // ------------------------- testOneFunc --------------------------------------- // Purpose: Apply the selected function to one or all data lists. // Returns: Nothing // Arguments: int sel is 0,1,or 2, selecting krQuick, krQuick2, or quick3. // Globals: char dArg is the data list selector command line argument. It is '0', // '1', '2', or 'A'. 'A' selects all data lists. Otherwise, int dataList is the // int value of dArg, which has already been translated for us by the command // line processor. // ............................................................................. void testOneFunc( int sel ) { totCalls = 0; totDepth = 0; totCompares = 0; totSwaps = 0; sortFunc = sortFuncs[ sel ].func; printf( "====== %s ======\n", sortFuncs[ sel ].name ); if( userDataLen != 0 ) sortOneSet( -1 ); else if( dArg == 'A' ) { for( UINT idx = 0 ; idx < DIM( lists ) ; idx++ ) sortOneSet( idx ); printf( "Total: calls = %d, depth = %d, compares = %d, swaps = %d\n", totCalls, totDepth, totCompares, totSwaps ); } else sortOneSet( dataList ); } // --------------------------------- main -------------------------------------- // Purpose: Process command line arguments, set up show (print output) and data // list selectors, and invoke testOneFunc either once for the selected function // or for each of the three functions. // ............................................................................. int main( int argc, char **argv ) { char *cp; char fArg = 'A'; // function selector 0,1,2,A UINT idx; showWhat = SHOW_NOTHING; dArg = 'A'; for( int cnt = 1 ; cnt < argc ; cnt++ ) { cp = argv[ cnt ]; switch( toupper( *cp )) { case 'F': fArg = toupper( cp[1] ); break; case 'D': dArg = toupper( cp[1] ); if( dArg != 'A' ) { dataList = dArg - '0'; if( dataList < 0 || dataList >= (int)DIM( lists )) { printf( "Error: bad data list selector %c\n", dArg ); return 1; } } break; case 'S': // show selector matches bit-mapped showWhat or N or A ++cp; if( *cp != 0 || toupper( *cp ) != 'N' ) { if( toupper( *cp ) == 'A' ) showWhat = SHOW_ALL; else showWhat = atoi( cp ); } break; default: if( !isdigit( *cp )) { printf( "Error: There is no option %c\n", *cp ); return 1; } for( idx = 0 ; idx < DIM( total ) && cnt < argc ; idx++, cnt++ ) total[ idx ] = atoi( argv[ cnt ] ); userData = (int*)malloc( sizeof( int ) * idx ); if( userData == 0 ) { printf( "Error: Unable to allocate memory for data list\n" ); return 2; } memcpy( userData, total, sizeof( int ) * idx ); userDataLen = idx; } } switch( fArg ) { case 'A': for( UINT sfi = 0 ; sfi < DIM( sortFuncs ) ; sfi++ ) testOneFunc( sfi ); break; case '0': case '1': case '2': testOneFunc( fArg - '0' ); break; default: printf( "Error: bad function selector %c\n", fArg ); return 1; } return 0; }
Results of quick This uses all defaults, which is most useful for comparing the performance of the three different functions. ====== krQuick ====== 4 0 2 5 1 3 0 1 2 3 4 5 Calls = 7, depth = 2, compares = 8, swaps = 20 --------------------------------- 0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11 Calls = 15, depth = 3, compares = 25, swaps = 48 --------------------------------- 11 10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7 8 9 10 11 Calls = 17, depth = 5, compares = 30, swaps = 62 --------------------------------- 11 9 7 5 3 1 0 2 4 6 8 10 0 1 2 3 4 5 6 7 8 9 10 11 Calls = 13, depth = 5, compares = 33, swaps = 56 --------------------------------- 11 0 10 1 9 2 8 3 7 4 6 5 0 1 2 3 4 5 6 7 8 9 10 11 Calls = 15, depth = 6, compares = 38, swaps = 60 --------------------------------- Total: calls = 67, depth = 21, compares = 134, swaps = 246 ====== krQuick2 (no identity swaps) ====== 4 0 2 5 1 3 0 1 2 3 4 5 Calls = 7, depth = 2, compares = 8, swaps = 16 --------------------------------- 0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11 Calls = 15, depth = 3, compares = 25, swaps = 28 --------------------------------- 11 10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7 8 9 10 11 Calls = 17, depth = 5, compares = 30, swaps = 52 --------------------------------- 11 9 7 5 3 1 0 2 4 6 8 10 0 1 2 3 4 5 6 7 8 9 10 11 Calls = 13, depth = 5, compares = 33, swaps = 46 --------------------------------- 11 0 10 1 9 2 8 3 7 4 6 5 0 1 2 3 4 5 6 7 8 9 10 11 Calls = 15, depth = 6, compares = 38, swaps = 44 --------------------------------- Total: calls = 67, depth = 21, compares = 134, swaps = 186 ====== quick3 (no preswaps) ====== 4 0 2 5 1 3 0 1 2 3 4 5 Calls = 7, depth = 3, compares = 10, swaps = 10 --------------------------------- 0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11 Calls = 23, depth = 11, compares = 66, swaps = 22 --------------------------------- 11 10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7 8 9 10 11 Calls = 23, depth = 11, compares = 66, swaps = 22 --------------------------------- 11 9 7 5 3 1 0 2 4 6 8 10 0 1 2 3 4 5 6 7 8 9 10 11 Calls = 15, depth = 7, compares = 46, swaps = 54 --------------------------------- 11 0 10 1 9 2 8 3 7 4 6 5 0 1 2 3 4 5 6 7 8 9 10 11 Calls = 19, depth = 6, compares = 37, swaps = 30 --------------------------------- Total: calls = 87, depth = 38, compares = 225, swaps = 138 ******************************************************************************* Results of quick f0 s5 d1 S5 format is best for displaying how the sublist changes during sorting. Since LOCAL is displayed only after a swap, superfluous identity swaps (many in this example) are readily apparent. ====== krQuick ====== 0 1 2 3 4 5 6 7 8 9 10 11 GLOBAL 0 1 2 3 4 5 6 7 8 9 10 11 Local1: 0 1 2 3 4 5 6 7 8 9 10 11 Local2: 5 1 2 3 4 0 6 7 8 9 10 11 Local3: 5 1 2 3 4 0 6 7 8 9 10 11 Local3: 5 1 2 3 4 0 6 7 8 9 10 11 Local3: 5 1 2 3 4 0 6 7 8 9 10 11 Local3: 5 1 2 3 4 0 6 7 8 9 10 11 Local3: 5 1 2 3 4 0 6 7 8 9 10 11 Local4: 0 1 2 3 4 5 6 7 8 9 10 11 GLOBAL 0 1 2 3 4 5 6 7 8 9 10 11 Local1: 0 1 2 3 4 Local2: 2 1 0 3 4 Local3: 2 1 0 3 4 Local3: 2 1 0 3 4 Local4: 0 1 2 3 4 GLOBAL 0 1 2 3 4 5 6 7 8 9 10 11 Local1: 0 1 Local2: 0 1 Local4: 0 1 GLOBAL 0 1 2 3 4 5 6 7 8 9 10 11 Local1: GLOBAL 0 1 2 3 4 5 6 7 8 9 10 11 Local1: 1 GLOBAL 0 1 2 3 4 5 6 7 8 9 10 11 Local1: 3 4 Local2: 3 4 Local4: 3 4 GLOBAL 0 1 2 3 4 5 6 7 8 9 10 11 Local1: GLOBAL 0 1 2 3 4 5 6 7 8 9 10 11 Local1: 4 GLOBAL 0 1 2 3 4 5 6 7 8 9 10 11 Local1: 6 7 8 9 10 11 Local2: 8 7 6 9 10 11 Local3: 8 7 6 9 10 11 Local3: 8 7 6 9 10 11 Local4: 6 7 8 9 10 11 GLOBAL 0 1 2 3 4 5 6 7 8 9 10 11 Local1: 6 7 Local2: 6 7 Local4: 6 7 GLOBAL 0 1 2 3 4 5 6 7 8 9 10 11 Local1: GLOBAL 0 1 2 3 4 5 6 7 8 9 10 11 Local1: 7 GLOBAL 0 1 2 3 4 5 6 7 8 9 10 11 Local1: 9 10 11 Local2: 10 9 11 Local3: 10 9 11 Local4: 9 10 11 GLOBAL 0 1 2 3 4 5 6 7 8 9 10 11 Local1: 9 GLOBAL 0 1 2 3 4 5 6 7 8 9 10 11 Local1: 11 0 1 2 3 4 5 6 7 8 9 10 11 Calls = 15, depth = 3, compares = 25, swaps = 48 ******************************************************************************** Results of quick f0 sa d1 This is the same as the previous example but shows the additional detail of index values that lead to the swapping decision. However, the clutter tends to obscure what is actually happening to the sublist. ====== krQuick ====== 0 1 2 3 4 5 6 7 8 9 10 11 GLOBAL 0 1 2 3 4 5 6 7 8 9 10 11 Local1: 0 1 2 3 4 5 6 7 8 9 10 11 Local2: 5 1 2 3 4 0 6 7 8 9 10 11 i=1 @i=1 left=0 @left=5 last=0 Local3: 5 1 2 3 4 0 6 7 8 9 10 11 i=2 @i=2 left=0 @left=5 last=1 Local3: 5 1 2 3 4 0 6 7 8 9 10 11 i=3 @i=3 left=0 @left=5 last=2 Local3: 5 1 2 3 4 0 6 7 8 9 10 11 i=4 @i=4 left=0 @left=5 last=3 Local3: 5 1 2 3 4 0 6 7 8 9 10 11 i=5 @i=0 left=0 @left=5 last=4 Local3: 5 1 2 3 4 0 6 7 8 9 10 11 Local4: 0 1 2 3 4 5 6 7 8 9 10 11 GLOBAL 0 1 2 3 4 5 6 7 8 9 10 11 Local1: 0 1 2 3 4 Local2: 2 1 0 3 4 i=1 @i=1 left=0 @left=2 last=0 Local3: 2 1 0 3 4 i=2 @i=0 left=0 @left=2 last=1 Local3: 2 1 0 3 4 Local4: 0 1 2 3 4 GLOBAL 0 1 2 3 4 5 6 7 8 9 10 11 Local1: 0 1 Local2: 0 1 Local4: 0 1 GLOBAL 0 1 2 3 4 5 6 7 8 9 10 11 Local1: GLOBAL 0 1 2 3 4 5 6 7 8 9 10 11 Local1: 1 GLOBAL 0 1 2 3 4 5 6 7 8 9 10 11 Local1: 3 4 Local2: 3 4 Local4: 3 4 GLOBAL 0 1 2 3 4 5 6 7 8 9 10 11 Local1: GLOBAL 0 1 2 3 4 5 6 7 8 9 10 11 Local1: 4 GLOBAL 0 1 2 3 4 5 6 7 8 9 10 11 Local1: 6 7 8 9 10 11 Local2: 8 7 6 9 10 11 i=7 @i=7 left=6 @left=8 last=6 Local3: 8 7 6 9 10 11 i=8 @i=6 left=6 @left=8 last=7 Local3: 8 7 6 9 10 11 Local4: 6 7 8 9 10 11 GLOBAL 0 1 2 3 4 5 6 7 8 9 10 11 Local1: 6 7 Local2: 6 7 Local4: 6 7 GLOBAL 0 1 2 3 4 5 6 7 8 9 10 11 Local1: GLOBAL 0 1 2 3 4 5 6 7 8 9 10 11 Local1: 7 GLOBAL 0 1 2 3 4 5 6 7 8 9 10 11 Local1: 9 10 11 Local2: 10 9 11 i=10 @i=9 left=9 @left=10 last=9 Local3: 10 9 11 Local4: 9 10 11 GLOBAL 0 1 2 3 4 5 6 7 8 9 10 11 Local1: 9 GLOBAL 0 1 2 3 4 5 6 7 8 9 10 11 Local1: 11 0 1 2 3 4 5 6 7 8 9 10 11 Calls = 15, depth = 3, compares = 25, swaps = 48
答案 2 :(得分:2)
魔术有用的谷歌关键词:QuickSort
e.g。 google:how quicksort works出现了这样的解释:http://www.angelfire.com/pq/jamesbarbetti/articles/sorting/001a_HowQuicksortWorks.htm等等。
基本上,代码会将快速排序的变体应用于指定的left
和right
边界之间的元素。
对于您已识别的行:
将中间元素与第一个(left
)交换。它将成为“支点”。
跟踪更大和更小元素之间的界限。这是枢轴所属的地方。
在第一个更大元素之前移动它。
将枢轴移回原位。
以递归方式将qsort应用于数据透视之前的元素。 (较小的)
以递归方式将qsort应用于数据透视后的元素。 (较大的)
尝试将代码自己应用于数字列表,然后看看它是否更有意义....
答案 3 :(得分:0)
你的代码中有一个错误,最后的行:
qsort(v, left, last - 1); [7]
qsort(v, last + 1, right); [8]
应该是:
qsort(v, left, last - 1, comp); [7]
qsort(v, last + 1, right, comp); [8]
或者我错过了什么?
此外,重用标准库的名称是不好的方式,特别是如果新函数的签名与lib中的签名不同。 标准库的函数qsort有这个原型:
void qsort(void *base, size_t nel, size_t width, int (*compar)(const void *, const void *));
如果您的程序更大(多个目标文件),这可能会产生有趣的错误。想象一下调用标准qsort函数的另一个模块,但是当你重新定义它时,使用兼容的签名,但是使用不同的语义,你会遇到意想不到的错误。
答案 4 :(得分:0)
嗨,我做了第87页的例子。可能有人会理解这一点。但在使用此代码之前,请参阅quicksort
/**
* qsort.c
* Quick sort using recursion
*/
#include <stdio.h>
void qsort(int v[], int left, int right);
int main()
{
int v[] = {9, 3, 4, 6, 7, 3, 1};
qsort(v, 0, 6);
int i;
for (i = 0; i < 7; i++)
printf(" %d ", v[i]);
printf("\n");
return 0;
}
void qsort(int v[], int left, int right)
{
int i, last; /* last is pivot */
void swap(int v[], int i, int j);
if (left >= right)
return;
swap(v, left, (left + right) / 2); // swap mid element to front
last = left; // set this position as pivot
for (i = left + 1; i <= right; i++) {
/*loop through every other element
swap elements less than pivot i.e bigger to right, smaller to left
*/
if (v[i] < v[left])
swap(v, ++last, i); // when swapping lesser element, record
// where our pivot moves
/*
we don't swap elements that are bigger than pivot, and are to right.
However we swap elements those are less than pivot.
With ++pivot we are essentially going to find out, where our
pivot will fit to be at the position, where all the elements
before it are less than it and all after it greater.
*/
}
// swap left(our pivot) to last(where pivot must go
// i.e all elements before pivot are less than it
// and all elements above it are greater
// remember they are lesser and greater
// but may not be sorted still
// this is called partition
swap(v, left, last);
// Do same(qsort) for all the elements before our pivot
// and above our pivot
qsort(v, left, last - 1); // last is our pivot position
qsort(v, last + 1, right);
// Each of above two qsort will use middle element as pivot and do
// what we did above, because same code will be executed by recursive
// functions
}
void swap(int v[], int i, int j)
{
int temp;
temp = v[i];
v[i] = v[j];
v[j] = temp;
}
最重要的部分是枢轴(将你的一只脚放在适当位置,同时自由移动另一只脚)。我们选择中间元素作为枢轴,将其置于前面,将其与所有其他元素进行比较。如果它们小于我们的枢轴,我们交换它们并仅增加我们的枢轴位置(小心我们的枢轴元素仍然位于第一位)。在我们完成循环之后,我们将枢轴元素(首先是)带到这个地方(枢轴位置)。在循环之后,我们在枢轴之前的所有元素都小于枢轴,并且所有那些在枢轴之上的元素大于枢轴。在第一次循环时,它们没有排序。因此,您必须再次将相同的排序算法递归应用于枢轴下方和枢轴上方的所有元素,以对它们进行排序。