这是一个面试问题。
给出了二叉搜索树,并且交换了两个节点的值。问题是如何在树的单次遍历中找到节点和交换值?
我试图使用下面的代码解决这个问题,但我无法阻止递归,所以我得到分段错误。帮助我如何阻止递归。
#include <stdio.h>
#include <stdlib.h>
#include <limits.h>
#include <stdlib.h>
/* A binary tree node has data, pointer to left child
and a pointer to right child */
struct node
{
int data;
struct node* left;
struct node* right;
};
/* Helper function that allocates a new node with the
given data and NULL left and right pointers. */
struct node* newNode(int data)
{
struct node* node = (struct node*)
malloc(sizeof(struct node));
node->data = data;
node->left = NULL;
node->right = NULL;
return(node);
}
void modifiedInorder(struct node *root, struct node **nextNode)
{
static int nextdata=INT_MAX;
if(root)
{
modifiedInorder(root->right, nextNode);
if(root->data > nextdata)
return;
*nextNode = root;
nextdata = root->data;
modifiedInorder(root->left, nextNode);
}
}
void inorder(struct node *root, struct node *copyroot, struct node **prevNode)
{
static int prevdata = INT_MIN;
if(root)
{
inorder(root->left, copyroot, prevNode);
if(root->data < prevdata)
{
struct node *nextNode = NULL;
modifiedInorder(copyroot, &nextNode);
int data = nextNode->data;
nextNode->data = (*prevNode)->data;
(*prevNode)->data = data;
return;
}
*prevNode = root;
prevdata = root->data;
inorder(root->right, copyroot, prevNode);
}
}
/* Given a binary tree, print its nodes in inorder*/
void printInorder(struct node* node)
{
if (node == NULL)
return;
/* first recur on left child */
printInorder(node->left);
/* then print the data of node */
printf("%d ", node->data);
/* now recur on right child */
printInorder(node->right);
}
int main()
{
/* 4
/ \
2 3
/ \
1 5
*/
struct node *root = newNode(1); // newNode will return a node.
root->left = newNode(2);
root->right = newNode(3);
root->left->left = newNode(4);
root->left->right = newNode(5);
printf("Inorder Traversal of the original tree\n ");
printInorder(root);
struct node *prevNode=NULL;
inorder(root, root, &prevNode);
printf("\nInorder Traversal of the fixed tree \n");
printInorder(root);
return 0;
}
答案 0 :(得分:7)
使用inorder遍历走到树上。通过使用它,您将获得所有元素的排序,并且将交换一个比周围元素更大的元素。
例如,请考虑以下二叉树
_ 20 _
/ \
15 30
/ \ / \
10 17 25 33
/ | / \ / \ | \
9 16 12 18 22 26 31 34
首先,我们将其线性化为数组,然后得到
9 10 16 15 12 17 18 20 22 25 26 30 31 33 34
现在您可以注意到16大于其周围元素,并且12小于它们。这立刻告诉我们交换了12和16。
答案 1 :(得分:1)
以下函数通过在收紧边界的同时递归迭代左右子树来验证树是否为BST。
我认为可以修改它以通过
实现上述任务编辑:我们需要区分递归函数返回true与指向交换节点的指针
这假定问题定义中只提到了两个这样的值
bool validate_bst(tnode *temp, int min, int max)
{
if(temp == NULL)
return true;
if(temp->data > min && temp->data < max)
{
if( validate_bst(temp->left, min, temp->data) &&
validate_bst(temp->right, temp->data, max) )
return true;
}
return false;
}
主要会像上面这样呼叫api
validate_bst(root, -1, 100); // Basically we pass -1 as min and 100 as max in
// this instance
答案 2 :(得分:1)
我们可以在O(n)时间内解决此问题,并且只需遍历给定的BST。由于BST的有序遍历始终是一个有序数组,因此可以将问题简化为交换有序数组的两个元素的问题。我们需要处理两种情况:
6
/ \
10 2
/ \ / \
1 3 7 12
1。交换的节点在BST的顺序遍历中不相邻。
例如,节点10和2在{1 10 3 6 7 2 12}中交换。 给定树的有序遍历为1 10 3 6 7 2 12
如果我们仔细观察,在有序遍历期间,我们发现节点3小于先前访问的节点10。这里保存了节点10(先前的节点)的上下文。同样,我们发现节点2小于先前的节点7。这次,我们保存了节点2(当前节点)的上下文。最后交换两个节点的值。
2。交换的节点在BST的有序遍历中是相邻的。
6
/ \
10 8
/ \ / \
1 3 7 12
例如,节点10和2在{1 10 3 6 7 8 12}中交换。 给定树的有序遍历为1 10 3 6 7 8 12 与情况#1不同,此处仅存在一个节点值小于先前节点值的点。例如节点10小于节点36。
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
void recoverTreeUtil(TreeNode *root, TreeNode **first, TreeNode **middle, TreeNode **last, TreeNode **prev) {
if (root) {
recoverTreeUtil(root->left, first, middle, last, prev);
if (*prev && (*prev)->val > root->val) {
if (!(*first)) {
*first = *prev;
*middle = root;
} else *last = root;
}
*prev = root;
recoverTreeUtil(root->right, first, middle, last, prev);
}
}
void recoverTree(TreeNode* root) {
TreeNode *first, *middle, *last, *prev;
first = middle = last = prev = nullptr;
recoverTreeUtil(root, &first, &middle, &last, &prev);
if (first && last) swap(first->val, last->val);
else if (first && middle) swap(first->val, middle->val);
}
};
答案 3 :(得分:0)
我在Geeksforgeeks.com上找到了这个问题的另一个解决方案..............各位你们可以查看这个帖子,以获得下面代码的更多解释http://www.geeksforgeeks.org/archives/23616
// Two nodes in the BST's swapped, correct the BST.
#include <stdio.h>
#include <stdlib.h>
/* A binary tree node has data, pointer to left child
and a pointer to right child */
struct node
{
int data;
struct node *left, *right;
};
// A utility function to swap two integers
void swap( int* a, int* b )
{
int t = *a;
*a = *b;
*b = t;
}
/* Helper function that allocates a new node with the
given data and NULL left and right pointers. */
struct node* newNode(int data)
{
struct node* node = (struct node *)malloc(sizeof(struct node));
node->data = data;
node->left = NULL;
node->right = NULL;
return(node);
}
// This function does inorder traversal to find out the two swapped nodes.
// It sets three pointers, first, middle and last. If the swapped nodes are
// adjacent to each other, then first and middle contain the resultant nodes
// Else, first and last contain the resultant nodes
void correctBSTUtil( struct node* root, struct node** first,
struct node** middle, struct node** last,
struct node** prev )
{
if( root )
{
// Recur for the left subtree
correctBSTUtil( root->left, first, middle, last, prev );
// If this node is smaller than the previous node, it's violating
// the BST rule.
if (*prev && root->data < (*prev)->data)
{
// If this is first violation, mark these two nodes as
// 'first' and 'middle'
if ( !*first )
{
*first = *prev;
*middle = root;
}
// If this is second violation, mark this node as last
else
*last = root;
}
// Mark this node as previous
*prev = root;
// Recur for the right subtree
correctBSTUtil( root->right, first, middle, last, prev );
}
}
// A function to fix a given BST where two nodes are swapped. This
// function uses correctBSTUtil() to find out two nodes and swaps the
// nodes to fix the BST
void correctBST( struct node* root )
{
// Initialize pointers needed for correctBSTUtil()
struct node *first, *middle, *last, *prev;
first = middle = last = prev = NULL;
// Set the poiters to find out two nodes
correctBSTUtil( root, &first, &middle, &last, &prev );
// Fix (or correct) the tree
if( first && last )
swap( &(first->data), &(last->data) );
else if( first && middle ) // Adjacent nodes swapped
swap( &(first->data), &(middle->data) );
// else nodes have not been swapped, passed tree is really BST.
}
/* A utility function to print Inoder traversal */
void printInorder(struct node* node)
{
if (node == NULL)
return;
printInorder(node->left);
printf("%d ", node->data);
printInorder(node->right);
}
/* Driver program to test above functions*/
int main()
{
/* 6
/ \
10 2
/ \ / \
1 3 7 12
10 and 2 are swapped
*/
struct node *root = newNode(6);
root->left = newNode(10);
root->right = newNode(2);
root->left->left = newNode(1);
root->left->right = newNode(3);
root->right->right = newNode(12);
root->right->left = newNode(7);
printf("Inorder Traversal of the original tree \n");
printInorder(root);
correctBST(root);
printf("\nInorder Traversal of the fixed tree \n");
printInorder(root);
return 0;
}
Output:
Inorder Traversal of the original tree
1 10 3 6 7 2 12
Inorder Traversal of the fixed tree
1 2 3 6 7 10 12
Time Complexity: O(n)
有关更多测试用例,请参阅此链接http://ideone.com/uNlPx
答案 4 :(得分:-1)
我的C ++解决方案:
struct node *correctBST( struct node* root )
{
//add code here.
if(!root)return root;
struct node* r = root;
stack<struct node*>st;
// cout<<"1"<<endl;
struct node* first = NULL;
struct node* middle = NULL;
struct node* last = NULL;
struct node* prev = NULL;
while(root || !st.empty()){
while(root){
st.push(root);
root = root->left;
}
root = st.top();
st.pop();
if(prev && prev->data > root->data){
if(!first){
first = prev;
middle = root;
}
else{
last = root;
}
}
prev = root;
root = root->right;
}
if(first && last){
swap(first->data,last->data);
}
else{
swap(first->data,middle->data);
}
return r;
}