我正在阅读“7天7种语言”一书,并已进入Prolog章节。作为一个学习练习,我试图解决一些文本逻辑难题。谜题如下:
五个姐妹都在一个不同的月份过生日,每个人在一周的不同日子。使用下面的线索,确定每个姐妹的生日下降的一周中的月份和日期。
对于经验丰富的Prolog程序员来说,我目前的实现可能看起来像个笑话。代码粘贴在下面。
我希望得到一些关于如何解决问题的建议,以及如何使代码既清晰又密集。
即:
is_day(Day) :-
member(Day, [sunday, monday, wednesday, friday, saturday]).
is_month(Month) :-
member(Month, [february, march, june, july, december]).
solve(S) :-
S = [[Name1, Month1, Day1],
[Name2, Month2, Day2],
[Name3, Month3, Day3],
[Name4, Month4, Day4],
[Name5, Month5, Day5]],
% Five girls; Abigail, Brenda, Mary, Paula, Tara
Name1 = abigail,
Name2 = brenda,
Name3 = mary,
Name4 = paula,
Name5 = tara,
is_day(Day1), is_day(Day2), is_day(Day3), is_day(Day4), is_day(Day5),
Day1 \== Day2, Day1 \== Day3, Day1 \== Day4, Day1 \== Day5,
Day2 \== Day1, Day2 \== Day3, Day2 \== Day4, Day2 \== Day5,
Day3 \== Day1, Day3 \== Day2, Day3 \== Day4, Day3 \== Day5,
Day4 \== Day1, Day4 \== Day2, Day4 \== Day3, Day4 \== Day5,
is_month(Month1), is_month(Month2), is_month(Month3), is_month(Month4), is_month(Month5),
Month1 \== Month2, Month1 \== Month3, Month1 \== Month4, Month1 \== Month5,
Month2 \== Month1, Month2 \== Month3, Month2 \== Month4, Month2 \== Month5,
Month3 \== Month1, Month3 \== Month2, Month3 \== Month4, Month3 \== Month5,
Month4 \== Month1, Month4 \== Month2, Month4 \== Month3, Month4 \== Month5,
% Paula was born in March but not on Saturday.
member([paula, march, _], S),
Day4 \== sunday,
% Abigail's birthday was not on Friday or Wednesday.
Day1 \== friday,
Day1 \== wednesday,
% The girl whose birthday is on Monday was born
% earlier in the year than Brenda and Mary.
% Tara wasn't born in February, and
% her birthday was on the weekend.
Month5 \== february,
Day5 \== monday, Day5 \== wednesday, Day5 \== friday,
% Mary was not born in December nor was her
% birthday on a weekday.
Month3 \== december,
Day3 \== monday, Day3 \== wednesday, Day3 \== friday,
% The girl whose birthday was in June was
% born on Sunday.
member([_, june, sunday], S),
% Tara was born before Brenda, whose birthday
% wasn't on Friday.
Day2 \== friday,
% Mary wasn't born in July.
Month3 \== july.
更新根据chac的回答,我能够解决这个难题。按照相同的方法,我们(工作中的编程语言能力小组)也能够解决第二个难题。我已发布complemete implementation, and example output as a gist on GitHub。
答案 0 :(得分:4)
使用maplist / 2将大大缩短您的代码。例如:
maplist(is_month, [Month1,Month2,Month3,Month4,Month5]).
month / 1可能是比is_month / 1更好的谓词名称。要说明两个术语不同,请使用约束dif / 2。使用maplist / 2和dif / 2,您可以描述列表包含成对不同的元素:
all_dif([]).
all_dif([L|Ls]) :-
maplist(dif(L), Ls),
all_dif(Ls).
示例:
?- all_dif([X,Y,Z]).
dif(X, Z),
dif(X, Y),
dif(Y, Z).
solve / 1是命令式名称 - 您正在描述解决方案,因此最好将其称为解决方案/ 1.
答案 1 :(得分:2)
也许这个谜语没有说明,或者你的解决方案没有完成:测试你的代码,我得到了
?- solve(X),maplist(writeln,X).
[abigail,february,monday]
[brenda,july,wednesday]
[mary,june,sunday]
[paula,march,friday]
[tara,december,saturday]
X = [[abigail, february, monday], [brenda, july, wednesday], [mary, june, sunday], [paula, march, friday], [tara, december, saturday]] ;
[abigail,february,monday]
[brenda,december,wednesday]
[mary,june,sunday]
[paula,march,friday]
[tara,july,saturday]
X = [[abigail, february, monday], [brenda, december, wednesday], [mary, june, sunday], [paula, march, friday], [tara, july, saturday]]
还有更多解决方案。布兰达什么时候出生?
唯一性的'交易技巧'是使用select / 3谓词,或简称为permutation / 2。最后使用这个代码就像
solve(S) :-
S = [[Name1, Month1, Day1],
[Name2, Month2, Day2],
[Name3, Month3, Day3],
[Name4, Month4, Day4],
[Name5, Month5, Day5]],
Girls = [abigail, brenda, mary, paula, tara],
Girls = [Name1, Name2, Name3, Name4, Name5],
Months = [february, march, june, july, december],
Days = [sunday, monday, wednesday, friday, saturday],
permutation(Months, [Month1, Month2, Month3, Month4, Month5]),
permutation(Days, [Day1, Day2, Day3, Day4, Day5]),
% Paula was born in March but not on Saturday.
member([paula, march, C1], S), C1 \= saturday,
...
关于'年复一年'的关系可以这样编码:
...
% The girl whose birthday is on Monday was born
% earlier in the year than Brenda and Mary.
member([_, C3, monday], S),
member([brenda, C4, C10], S), before_in_year(C3, C4, Months),
member([mary, C5, _], S), before_in_year(C3, C5, Months),
...
使用服务谓词
before_in_year(X, Y, Months) :-
nth1(Xi, Months, X),
nth1(Yi, Months, Y),
Xi < Yi.
'周末出生'可以编码为
...
% Tara wasn't born in February, and
% her birthday was on the weekend.
member([tara, C6, C7], S), C6 \= february, (C7 = saturday ; C7 = sunday),
% Mary was not born in December nor was her
% birthday on a weekday.
member([mary, C8, C9], S), C8 \= december, (C9 = saturday ; C9 = sunday),
...
等等。在重写之后,我得到了独特的解决方案
?- solve(X),maplist(writeln,X).
[abigail,february,monday]
[brenda,december,wednesday]
[mary,june,sunday]
[paula,march,friday]
[tara,july,saturday]
X = [[abigail, february, monday], [brenda, december, wednesday], [mary, june, sunday], [paula, march, friday], [tara, july, saturday]] ;
false.
修改强>
我刚才注意到我引入了一些冗余的成员/ 2和自由变量,比如member([brenda, C4, C10], S),...
。那些C4,C10显然可以被绑定到Brenda的变量替换为Month2,Day2,与原始代码一样。
答案 2 :(得分:1)
这是一个在问题空间上使用强力搜索的解决方案。说我不为此感到骄傲不会走得太远。当然,这个问题有一个更优雅的解决方案。
反正:
month(january).
month(february).
month(march).
month(april).
month(may).
month(june).
month(july).
month(august).
month(september).
month(october).
month(november).
month(december).
precedes(january, february).
precedes(february, march).
precedes(march, april).
precedes(april, may).
precedes(may, june).
precedes(june, july).
precedes(july, august).
precedes(august, september).
precedes(september, october).
precedes(october, november).
precedes(november, december).
earlier(M1, M2) :- precedes(M1, M2).
earlier(M1, M2) :- month(M1), month(M2), precedes(M1, X), month(X), earlier(X, M2).
weekday(monday).
weekday(tuesday).
weekday(wednesday).
weekday(thursday).
weekday(friday).
weekend(saturday).
weekend(sunday).
birthmonth(abigail, M) :-
month(M),
M \== march.
birthmonth(brenda, M) :-
month(M),
M \== march.
birthmonth(paula, march).
birthmonth(mary, M) :-
month(M),
M \== march, M \== december, M \== july.
birthmonth(tara, M) :-
month(M),
M \== march,
M \== february.
birthday(abigail, D) :-
weekday(D),
D \== friday, D \== wednesday.
birthday(brenda, D) :-
weekday(D),
D \== friday,
D \== monday.
birthday(mary, D) :- weekend(D).
birthday(paula, D) :- weekday(D), D \==saturday.
birthday(tara, D) :- weekend(D).
answer(M, D):-
candidate(M, D),
member(june, M),
member(sunday, D),
nth(IM, M, june),
nth(ID, D, sunday),
IM =:= ID,
nth(5, M, MTARA),
nth(2, M, MBRENDA),
earlier(MTARA, MBRENDA),
nth(3, M, MMARY),
nth(IMONDAY, D, monday),
nth(IMONDAY, M, MMONDAY),
earlier(MMONDAY, MBRENDA),
earlier(MMONDAY, MMARY).
candidate([M1,M2,M3,M4,M5], [D1,D2,D3,D4,D5]):-
birthday(abigail, D1),
birthday(brenda, D2),
D1 \== D2,
birthday(mary, D3),
D1 \== D3,
D2 \== D3,
birthday(paula, D4),
D1 \== D4,
D2 \== D4,
D3 \== D4,
birthday(tara, D5),
D1 \== D5,
D2 \== D5,
D3 \== D5,
D4 \== D5,
birthmonth(abigail, M1),
birthmonth(brenda, M2),
M1 \== M2,
birthmonth(mary, M3),
M1 \== M3,
M2 \== M3,
birthmonth(paula, M4),
M1 \== M4,
M2 \== M4,
M3 \== M4,
birthmonth(tara, M5),
M1 \== M5,
M2 \== M5,
M3 \== M5,
M4 \== M5.
更好的答案是将排序约束作为birthmonth/2
或birthday/2
子句的一部分来实现。到目前为止,我还没能做到这一点。
candidate/2
实现了几个嵌套的for()
循环,你看不到它,但是WAM(Prolog的Warren抽象机器)经历了阴谋来迭代值{{1} } ......等等。
要查看可能的答案,请使用:
D1, D2, D3
继续按分号或gprolog中的'a'来查看所有答案。每个列表的元素按字母顺序对应女孩。
答案 3 :(得分:0)
唯一 - 从域中预先选择所有实体,可以实现简单,“清晰,密集”的代码。使用数字域可以轻松进行比较:
day( d(_,D,_), D).
fname( d(N,_,_), N). % first name
month( d(_,_,M), M).
sistersP(X):-
maplist( fname, X, ['Paula', 'Abigail', 'Brenda', 'Mary', 'Tara']),
maplist( month, X, [PM, AM, BM, MM, TM]),
maplist( day, X, [PD, AD, BD, MD, TD]),
permutation( [PM,AM,BM,MM,TM], [2,3,6,7,12]), % months of year
permutation( [PD,AD,BD,MD,TD], [sun,mon,wed,fri,sat]), % days of week
PM = 3, PD \== sat, AD \== fri, AD \== wed, % the five rules,
day(G,mon), member(G,X), month(G,GM), GM < BM, GM < MM, % one per line
TM =\= 2, (TD == sat ; TD == sun),
MM =\= 12, (MD == sat ; MD == sun), month(G2,6), day(G2,sun), member(G2,X),
TM < BM, BD \== fri, MM =\= 7.
这只找到一个解决方案,只使用拼图中提到的那些月份和星期几:
?- sistersP(X).
X = [d('Paula', fri, 3), d('Abigail', mon, 2), d('Brenda', wed, 12),
d('Mary', sun, 6), d('Tara', sat, 7)] ;
No
?- time( sistersP(_) ).
% 19,537 inferences, 0.01 CPU in 0.01 seconds (100% CPU, 2624221 Lips)
Yes
?- time( (sistersP(_),fail;true) ). % exhaust the search space
% 56,664 inferences, 0.03 CPU in 0.04 seconds (75% CPU, 2441285 Lips)
Yes
尽快进行测试,逐步选择,可以提高代码效率。我喜欢使用我自己的select/2
,它允许我从域中唯一地选择列表元素(即另一个列表,允许比第一个更长,因此permutation/2
不能使用) 。
select([A|As],S):- select(A,S,S1),select(As,S1).
select([],_).
sisters(X):-
maplist(fname, X, ['Paula', 'Abigail', 'Brenda', 'Mary', 'Tara']),
maplist(month, X, [PM, AM, BM, MM, TM]),
maplist(day, X, [PD, AD, BD, MD, TD]),
Months = [2,3,6,7,12], %%% [1,2,3,4,5,6,7,8,9,10,11,12],
Days = [sun,mon,wed,fri,sat], %%% [sun,mon,tue,wed,thu,fri,sat],
select(3,Months,M2), PM = 3,
select(PD,Days,D2), PD \== sat, % 1a
select(AD,D2,D3), AD \== fri, AD \== wed, % 1b
select(TM,M2,M3), TM =\= 2, % 3a
select(MM,M3,M4), MM =\= 12, MM =\= 7, % 4a1 % 5c
select(TD,D3,D4), select([TD,MD],[sat,sun]), % 3b % 4a2
month(G,6), day(G,sun), member(G,X), % 4b
select([MD,BD],D4), BD \== fri, % 5a
select([BM,AM],M4), TM < BM, % 5b
day(G2,mon), member(G2,X),
month(G2,G2M), G2M < BM, G2M < MM. % 2
运行它:
?- sisters(X).
X = [d('Paula', fri, 3), d('Abigail', mon, 2), d('Brenda', wed, 12),
d('Mary', sun, 6), d('Tara', sat, 7)] ;
No
?- time(sisters(_)).
% 2,071 inferences, 0.00 CPU in 0.00 seconds (?% CPU, Infinite Lips)
Yes
?- time( (sisters(_),fail;true) ). % exhaust the search space
% 2,450 inferences, 0.00 CPU in 0.00 seconds (?% CPU, Infinite Lips)
Yes
使用一年中的所有12个月和一周中的7天(我最初做的,不幸的是:)),有4561个解决方案,第二个代码找到的速度足够快(0.16秒,424,600个推论)。使用select/2
代替permutation/2
的第一个代码采用 180,400,000 推断,75秒生成第一个答案,而19,400个infs对于第二个更快的代码,在0.01秒内完成。
答案 4 :(得分:0)
在这类问题中,我喜欢关注拼图的文字(与SWI Prolog合作 6.3.0):
week_end(Day) :-
member(Day, [saturday, sunday]).
day(Day) :-
member(Day, [monday, wednesday, friday, saturday, sunday]).
month(Month) :-
member(Month, [february, march, june, july, december]).
before(M1, M2) :-
nth0(I1, [february, march, june, july, december], M1),
nth0(I2, [february, march, june, july, december], M2),
I1 < I2.
names([person(abigail, _, _),
person(brenda, _, _),
person(mary, _, _),
person(paula, _, _),
person(tara, _, _)]).
solve(L) :-
maplist(\X^(X = person(_, Day, Month),
day(Day),
month(Month)),
L),
forall((select(X,L, L1), select(Y, L1, _)),
( X = person(_, D1, M1),
Y = person(_, D2, M2),
D1 \= D2,
M1 \= M2)).
/*
1.Paula was born in March but not on Saturday. Abigail's birthday was not on Friday or Wednesday.
*/
rule_1(L) :-
member(person(paula, D, march), L),
D \== saturday,
member(person(abigail, D1, _M), L),
day(D1),
\+ member(D1, [friday, wednesday]).
/*
2.The girl whose birthday is on Monday was born earlier in the year than Brenda and Mary.
*/
rule_2(L) :-
member(person(_N, monday, M), L),
member(person(brenda, _D1, M1), L),
member(person(mary, _D2, M2), L),
before(M, M1),
before(M, M2).
/*
3.Tara wasn't born in February and her birthday was on the weekend.
*/
rule_3(L) :-
member(person(tara, D, M), L),
M \== february,
week_end(D).
/*
4.Mary was not born in December nor was her birthday on a weekday. The girl whose birthday was in June was born on Sunday.
*/
rule_4(L) :-
member(person(mary, D, M), L),
week_end(D),
M \== december,
member(person(_N, sunday, june), L).
/*
5.Tara was born before Brenda, whose birthday wasn't on Friday. Mary wasn't born in July.
*/
rule_5(L) :-
member(person(tara, _DT, MT), L),
member(person(brenda, DB, MB), L),
before(MT, MB),
% DB \== friday,
day(DB),
DB \= friday,
member(person(mary, _D, M), L),
M \== july.
puzzle :-
names(L),
rule_1(L),
rule_2(L),
rule_3(L),
rule_4(L),
rule_5(L),
solve(L),
maplist(writeln, L).
我明白了:
?- time(puzzle).
person(abigail,monday,february)
person(brenda,wednesday,december)
person(mary,sunday,june)
person(paula,friday,march)
person(tara,saturday,july)
% 45,144 inferences, 0.016 CPU in 0.031 seconds (50% CPU, 3294080 Lips)
true .
答案 5 :(得分:0)
#clpfd方法序言:-
:-use_module(library(clpfd)).
puzzle(Sisters,Months,Days):-
Sisters=[Paula, Brenda, Abigail, Mary, Tara], Sisters ins 1..5,
Months=[Feburary, March, June, July, December], Months ins 1..5,
Days=[Monday, Wednesday, Friday, Saturday, Sunday], Days ins 1..5,
Paula#=March,
Paula#\=Saturday,
Abigail#\=Friday #\/ Abigail #\=Wednesday,
Tara#\=Feburary #/\ (Tara#=Saturday #\/ Tara#=Sunday),
Mary#\=December #/\ (Mary#\=Saturday #\/ Mary#\=Sunday),
Tara#=Brenda-1,
Brenda#\=Friday,
Mary#\=July,
June#=Sunday,
Brenda #\=Monday #/\ Mary #\=Monday,
all_different(Sisters),
all_different(Months),
all_different(Days),
labeling([], Sisters), labeling([],Months), labeling([], Days).
?-puzzle(Sisters,Months,Days).
OUTPUT:
Days = [1, 3, 4, 2, 5],
Months = [3, 1, 5, 2, 4],
Sisters = [1, 3, 4, 5, 2]
Days = [4, 3, 1, 2, 5],
Months = [3, 1, 5, 2, 4],
Sisters = [1, 3, 4, 5, 2]
Days = [1, 3, 4, 2, 5],
Months = [3, 1, 5, 4, 2],
Sisters = [1, 3, 4, 5, 2]
......