快速优化

时间:2012-08-31 18:11:10

标签: c++ algorithm sorting optimization quicksort

我正在学习排序算法,下一步,我试图让我的实现执行接近std::sort()。我到目前为止很远......: - )

我有3个quicksort的实现:

  • 标准快速排序(使用临时数组)。
  • 快速排序并进行以下优化:
    • median3用于选择中位数
    • 尾递归
    • 快速排序仅适用于分区大小< 16.对于较小的分区,使用插入排序。
    • 插入排序一次应用于整个数组,而不是应用于每个分区,由quicksort保留未排序。
  • 快速排序,包含上面列出的所有优化+就地分区(无临时数组)。

我预计表现最好自下而上,但最好自上而下!

我的实施有什么问题?鉴于性能之间存在巨大差异,我认为存在一些完全错误。

一些数字让你感觉到有多糟糕(N =数组中元素的数量,数字是每个算法所用的时间,以微秒为单位): 对vector<int>进行排序,每个算法都给出完全相同的数字序列。

N           quick       mixed       mixed_inplace
8           0           0           0
16          0           1           1
32          1           2           2
64          1           3           3
128         1           8           8
256         3           16          17
512         6           34          41
1,024       16          84          87
2,048       28.3        177.1       233.2
4,096       48.5        366.6       410.1
8,192       146.5       833.5       1,012.6
16,384      408.4       1,855.6     1,964.2
32,768      1,343.5     3,895.0     4,241.7
65,536      2,661.1     7,927.5     8,757.8

使用Visual Studio Express 2010。

CODE:

// ------------ QUICK SORT ------------------
template<typename T, typename key_compare>
void quicksort( T first, T last, const size_t pivot_index, key_compare comp ) {
    T saved_first = first;
    size_t N = last - first;
    if (N > 1) {
        // create a temp new array, which contains all items less than pivot
        // on left and greater on right. With pivot value in between.
        // vector<typename decltype(*T)> temp(N);
        typename iterator_traits<T>::pointer temp = (typename iterator_traits<T>::pointer) malloc(sizeof(T)*N);
        size_t left_index = 0, right_index = N - 1 ;
        iterator_traits<T>::value_type pivot_val = *(first + pivot_index);
        for(; first < saved_first + pivot_index; first++) {
            if( !comp(*first, pivot_val) )
                temp[right_index--] = *first;
            else
                temp[left_index++] = *first;
        }
        // skip the pivot value
        // TODO: swap the pivot to end so we can have a single loop instead.
        ++first;
        // do the rest
        for(; first < last; first++) {
            if( !comp(*first, pivot_val) )
                temp[right_index--] = *first;
            else
                temp[left_index++] = *first;
        }
        if( right_index == left_index )
            temp[left_index] = pivot_val;
        else
            temp[left_index+1] = pivot_val;
        // recurse for left and right..
        quicksort(temp, temp+left_index, left_index/2, comp);
        quicksort(temp+left_index+1, temp+N, (N-right_index)/2, comp);

        // return a concat'd array..
        for(size_t i = 0; i < N; i++)
            *saved_first++ = temp[i];

        free(temp);
    }
}
/*
** best, average, worst: n log n, n log n, n^2
** space: log n
*/
template<typename T, typename key_compare >
void quicksort( T first, T last, key_compare comp ) {
    size_t pivot_index = (last - first) / 2;
    quicksort( first, last, pivot_index, comp);
}

// ------------ QUICK with optimizations ------------------
/*
quicksort partition on range [first, last[ using predicate function as the comparator.
"mid" is in-out param, function uses mid as mid, and updates it before returning it with
current/new mid position after partitioning.
*/
template<typename T, typename key_compare >
void _partial_quicksort_partition( T first, T last, T& mid, key_compare comp ) {
    T savedFirst = first;
    typedef typename iterator_traits<T>::value_type _val_type;
    size_t N = last - first;
    _val_type *temp = (_val_type *) malloc((N*sizeof(_val_type)));

    // move pivot to the end..
    _val_type pivot_val = *mid;
    std::swap(*mid, *(last - 1));
    size_t left_index = 0, right_index = N - 1;

    for( ; first != last - 1; first++ ) {
        if( !comp(*first, pivot_val) )
            temp[right_index--] = *first;
        else
            temp[left_index++] = *first;
    }

    assert( right_index == left_index );

    temp[left_index] = pivot_val;

    std::copy(temp, temp+N, savedFirst);
    free(temp);
    mid = savedFirst + left_index;
}

template<typename T, typename key_compare >
void _partial_quicksort( T first, T last, key_compare comp ) {
    size_t s = last - first;
    // sort only if the list is smaller than our limit.. else it's too small for
    // us to bother.. caller would take care of it using some other stupid algo..
    if( 16 > s ) {
        // only one call to insertion_sort(), after whole array is partially sorted
        // using quicksort().
        // my_insertion_sort::insertion_sort(first, last, pred);
        return ;
    }

    // select pivot.. use median 3
    T mid = my_mixed_inplace_quicksort::median3(first, last - 1, s, comp);
    // partition
    _partial_quicksort_partition(first, last, mid, comp);
    // recurse..
    _partial_quicksort(first, mid, comp);
    // tail recurse..
    // TODO: tail recurse on longer partition..
    _partial_quicksort(mid+1, last, comp);
}

template<typename T, typename key_compare >
void mixed_quicksort( T first, T last, key_compare pred ) {
    _partial_quicksort(first, last, pred );
    my_insertion_sort::insertion_sort(first, last, pred);
}

// ------------ "in place" QUICK with optimizations ------------------
/*
in place quicksort partition on range [first, last[ using predicate function as the comparator.
"mid" is in-out param, function uses mid as mid, and updates it before returning it with
current/new mid position after partitioning.
*/
template<typename T, typename key_compare >
void _partial_inplace_quicksort_partition( T first, T last, T& mid, key_compare comp ) {
    typename iterator_traits<T>::value_type midVal = *mid;
    // move pivot to end..
    std::swap(*mid, *(last - 1));
    mid = first;
    // in-place quick sort:
    for( ; first < last - 1; first++ ) {
        if( comp(*first, midVal) ) {
            std::swap(*first, *mid);
            mid++;
        }
    }
    // bring pivot to the mid..
    std::swap(*mid, *(last - 1));
}

// brings best median to middle and returns it..
// works on array as [first, last] NOT [first, last[
template<typename T, typename key_compare >
T median3(T first, T last, size_t size, key_compare comp ) {
    T mid = first + size/2;
    if (comp(*mid, *first)) {
        std::swap(*mid, *first);
    }
    if (comp(*last, *mid)) {
        std::swap(*last, *mid);
    }
    if (comp(*mid, *first)) {
        std::swap(*mid, *first);
    }
    return mid;
}

template<typename T, typename key_compare >
void _partial_inplace_quicksort( T first, T last, key_compare comp ) {
    size_t s = last - first;
    // sort only if the list is smaller than our limit.. else it's too small for
    // us to bother.. caller would take care of it using some other stupid algo..
    if( 16 > s ) {
        // only one call to insertion_sort(), after whole array is partially sorted
        // using quicksort().
        // my_insertion_sort::insertion_sort(first, last, pred);
        return ;
    }

    // select pivot.. use median 3
    T mid = median3(first, last - 1, s, comp);
    // partition
    _partial_inplace_quicksort_partition(first, last, mid, comp);
    // recurse..
    _partial_inplace_quicksort(first, mid, comp);
    // tail recurse..
    _partial_inplace_quicksort(mid+1, last, comp);
    // print_array(first, last, "_partial_inplace_quicksort(exit2)" );
}

// in-place quick sort
// tail recurse
// median
// final insertion sort..
template<typename T, typename key_compare >
void mixedsort_inplace( T first, T last, key_compare pred ) {
    _partial_inplace_quicksort(first, last, pred );
    my_insertion_sort::insertion_sort(first, last, pred);
}

// ---------------- INSERTION SORT used above ----------------
namespace my_insertion_sort {
    template<typename T, typename key_compare>
    void insertion_sort( T first, T last, key_compare comp ) {
        // for each element in the array [first+1, last[
        for( T j = first+1; j < last; j++) {
            iterator_traits<T>::value_type curr = *j;
            T hole = j;
            // keep moving all the elements comp(hole.e. > or <) hole to right
            while( hole > first && comp(curr, *(hole-1)) ) {
                *hole = *(hole-1);
                --hole;
            }
            // insert curr at the correct position.
            *hole = curr;
        }
    }
}

用于测试的代码:

#include <ctime>
#ifdef _WIN32
#include <Windows.h>
#include <WinBase.h>
#endif // _WIN32

template<typename T, typename key_compare = std::less<T>> class MySortAlgoTester;

template <typename T>
void print_array( T begin, T end, string prefix = "" ) {
    cout << prefix.c_str();
    for_each(begin, end, []( typename std::iterator_traits<T>::reference it) { cout << it << ','; } );
    cout << endl;
}

int main () {
    srand(123456789L);
    size_t numElements = 4;
    vector<char*> algoNames;
    map<double, vector<double>> results;
    int numTests = 0;
    while( (numElements *= 2) <= 4096*16 ) {
        MySortAlgoTester<int> tester(numElements);
        results[numElements] = vector<double>();
        algoNames.push_back("mixedsort_inplace");
        results[numElements].push_back(tester.test(my_mixed_inplace_quicksort::mixedsort_inplace, "mixedsort_inplace"));
        tester.reset();
        algoNames.push_back("quick");
        results[numElements].push_back(tester.test(my_quicksort::quicksort, "quicksort"));
        tester.reset();
        algoNames.push_back("mixed_quicksort");
        results[numElements].push_back(tester.test(my_mixed_quicksort::mixed_quicksort, "mixed_quicksort"));
    }
    // --- print the results...
    cout << std::setprecision(2) << std::fixed << endl << "N";
    for_each(algoNames.begin(), algoNames.begin()+(algoNames.size()/numTests), [](char* s){cout << ',' << s ;} );

    typedef std::pair<double,vector<double>> result_iter;
    BOOST_FOREACH(result_iter it, results) {
        cout << endl << it.first << ',';
    BOOST_FOREACH( double d, it.second ) {
        cout << d << ',' ;
    }
}

template<typename T, typename key_compare = std::less<T>>
class MySortAlgoTester {
    key_compare comp;
    vector<T> vec;
    typedef typename vector<T>::iterator vecIter;
    vector<T> vec_copy;
    size_t m_numElements;
    bool is_sorted(vecIter first, vecIter last) {
        vecIter sFirst = first;
        for(vecIter next = first+1; next != last;)
            // '>' associativity: left to right
            // ++ has precedence over >
            if( !comp(*(first++), *(next++)) ) {
                if(*(next-1) == *(first-1))
                    continue;
                print_array(sFirst, last, "is_sorted() returning false: ");
                cout << "comp(" << *(first-1) << ", " << *(next-1) << ") = false && "
                    << *(next-1) << " != " << *(first-1) << endl ;
                return false;
            }

            return true;
    }

public:
    MySortAlgoTester(size_t numElements) : m_numElements(numElements) {
        srand(123456789L);
        vec.resize(m_numElements);
        vec_copy.resize(m_numElements);
        //      std::generate(vec.begin(), vec.end(), rand);
        for(size_t i = 0; i < vec.size(); i++) {
            vec[i] = rand() % (m_numElements * 2);
            vec_copy[i] = vec[i];
        }
    }
    ~MySortAlgoTester() {
    }

    void reset() {
        // copy the data back so next algo can be tested with same array.
        std::copy(vec_copy.begin(), vec_copy.end(), vec.begin());
        for(size_t i = 0; i < vec_copy.size(); i++) {
            vec[i] = vec_copy[i];
        }
        // std::copy(vec_copy.begin(), vec_copy.end(),  vec);
    }

    double m___start_time_asdfsa = 0;
    double getTimeInMicroSecs() {
    #ifdef _WIN32
        LARGE_INTEGER li;
        if(!QueryPerformanceFrequency(&li))
            cout << "getTimeInMicroSecs(): QueryPerformanceFrequency() failed!" << endl;

        QueryPerformanceCounter(&li);
        return double(li.QuadPart)/1000.0;

    #else // _WIN32
        struct timeval tv;
        gettimeofday(&tv, NULL);
        return tv.tv_usec + 10e6 * tv.tv_sec;
    }
    #endif // _WIN32

    inline void printClock( const char* msg ) {
        cout << msg << (long)(getTimeInMicroSecs() - m___start_time_asdfsa) << " micro seconds" << endl;
    }
    inline double getClock() {
        return (getTimeInMicroSecs() - m___start_time_asdfsa);
    }
    inline void startClock() {
        m___start_time_asdfsa = getTimeInMicroSecs();
    }

    double test( void (*sort_func)(typename vector<T>::iterator first, typename vector<T>::iterator last, typename key_compare pred), const char* name ) {
        cout << "START Testing: " << name << ". With --- " << m_numElements << " elements." << endl;
        startClock();

        sort_func(vec.begin(), vec.end(), comp);
        double ms = getClock();
        if(!MySortAlgoTester::is_sorted(vec.begin(), vec.end())) {
            cout << name << " did not sort the array." << endl;
            // throw string(name) + " did not sort the array.";
        }
        cout << "DONE Testing: " << name << ". Time taken (ms): " << ms << endl;
        return ms;
    }

    double test( void (*sort_func)(typename vector<T>::iterator first, typename vector<T>::iterator last), const char* name ) {
        cout << "START Testing: " << name << ". With --- " << m_numElements << " elements." << endl;
        startClock();

        sort_func(vec.begin(), vec.end());
        double ms = getClock();
        if(!MySortAlgoTester::is_sorted(vec.begin(), vec.end())) {
            cout << name << " did not sort the array." << endl;
            // throw string(name) + " did not sort the array.";
        }
        cout << "DONE Testing: " << name << ". Time taken (ms): " << ms << endl;
        return ms;
    }
};

2 个答案:

答案 0 :(得分:5)

您的算法本身存在错误。例如。这里有未定义的行为:

插入排序可能会在标记的以下行中读取越界:

*(hole--) = *(hole-1);

它在第一个元素之前读取。我建议你的意思

*hole = *(hole-1);
--hole;

更新在64位Linux上使用GNU g ++ 4.6.1快速进行基准测试。我将时间重新排列为总数,所以我没有重新实现时钟功能(我很懒)。

改编代码: http://ideone.com/LgAgs

构建
g++ -std=c++0x -g -O3 test.cpp -o test

结果如下:插入排序似乎比其他排序大约 ~60-100x

START Testing: insertion_sort. With --- 8 elements.
START Testing: insertion_sort. With --- 16 elements.
START Testing: insertion_sort. With --- 32 elements.
START Testing: insertion_sort. With --- 64 elements.
START Testing: insertion_sort. With --- 128 elements.
START Testing: insertion_sort. With --- 256 elements.
START Testing: insertion_sort. With --- 512 elements.
START Testing: insertion_sort. With --- 1024 elements.
START Testing: insertion_sort. With --- 2048 elements.
START Testing: insertion_sort. With --- 4096 elements.
START Testing: insertion_sort. With --- 8192 elements.
START Testing: insertion_sort. With --- 16384 elements.
START Testing: insertion_sort. With --- 32768 elements.
START Testing: insertion_sort. With --- 65536 elements.

real    0m1.532s
user    0m1.524s
sys 0m0.004s
START Testing: quicksort. With --- 8 elements.
START Testing: quicksort. With --- 16 elements.
START Testing: quicksort. With --- 32 elements.
START Testing: quicksort. With --- 64 elements.
START Testing: quicksort. With --- 128 elements.
START Testing: quicksort. With --- 256 elements.
START Testing: quicksort. With --- 512 elements.
START Testing: quicksort. With --- 1024 elements.
START Testing: quicksort. With --- 2048 elements.
START Testing: quicksort. With --- 4096 elements.
START Testing: quicksort. With --- 8192 elements.
START Testing: quicksort. With --- 16384 elements.
START Testing: quicksort. With --- 32768 elements.
START Testing: quicksort. With --- 65536 elements.

real    0m0.025s
user    0m0.016s
sys 0m0.008s
START Testing: mixed_quicksort. With --- 8 elements.
START Testing: mixed_quicksort. With --- 16 elements.
START Testing: mixed_quicksort. With --- 32 elements.
START Testing: mixed_quicksort. With --- 64 elements.
START Testing: mixed_quicksort. With --- 128 elements.
START Testing: mixed_quicksort. With --- 256 elements.
START Testing: mixed_quicksort. With --- 512 elements.
START Testing: mixed_quicksort. With --- 1024 elements.
START Testing: mixed_quicksort. With --- 2048 elements.
START Testing: mixed_quicksort. With --- 4096 elements.
START Testing: mixed_quicksort. With --- 8192 elements.
START Testing: mixed_quicksort. With --- 16384 elements.
START Testing: mixed_quicksort. With --- 32768 elements.
START Testing: mixed_quicksort. With --- 65536 elements.

real    0m0.016s
user    0m0.004s
sys 0m0.008s

答案 1 :(得分:0)

所以最后我想我至少弄明白了一部分是错的。

感谢提示。

  • 使用-O3进行编译时(在GCC上,或MSVC上为/Oxmixed_inplace是最快且非常接近std::sort()
    • 我认为这意味着在较低的优化级别编译时,编译器不会应用至少一些预期的优化(尾递归)。
  • 构建应该是发布版本(在GCC上没有-g)。
  • @sehe:插入排序性能无关紧要。
  • GCC和MSVC上的
  • std::sort()实施方式不同,因此将两者进行比较并不正确。

以下是Windows和Linux上的结果以及w / o优化选项:

使用MSVC的Windows: Windows with MSVC

Windows与GCC: enter image description here

使用GCC的RedHat Linux: RHEL with GCC