ggplot2 - 无法在循环内使用scale_fill_manual应用颜色

时间:2012-08-29 00:16:14

标签: r loops ggplot2

我正在运行一个循环,在我的数据集的每个子设置中获取一个地图并相应地应用给定的调色板(和相应的图例)。

人们倾向于不喜欢使用for()循环并最大化其方法的矢量化。我不知道用这个特定数据集矢量化流程的最佳方法。

在这个特殊情况下,我正在处理一个相对较大的数据集(分布物种Atlas),因为使用了不同的方法,每个物种必须通过不同的选项,考虑到特定的季节,不同的观察结果等 物种可能在一个季节出现而错过另一个季节(它们可能是饲养员,居民或移民)。应为所有情况(季节)创建地图,不存在时为空。可以使用和使用附加数据(除了来自现场工作的数据)。 除了在自定义离散比例中显示感兴趣的变量(丰度)之外,地图图例必须适应所有变化。

通过运行一个循环,我觉得(根据我有限的专业知识)我可以更容易地保留和控制所需的几个对象,同时踩入我创建的通量来生成感兴趣的碎片,最后创建一组物种分布图。 / p>

  

我的问题是我将每个生成的ggplot存储在list()对象中。每个季节的每个物种都将存储在一个清单中。该   我使用时遇到的问题与 scale_fill_manual 有关   内部 循环

行为很奇怪,因为我完成了地图,但颜色只应用于最后一个ggplot输出。尽管如此,仍然可以在图例中正确识别所有值。

举例说明:

if (!require(ggplot2)) install.packages("ggplot2",
    repos = "http://cran.r-project.org"); library(ggplot2)
if (!require(grid)) install.packages("grid",
    repos = "http://cran.r-project.org"); library(grid)
if (!require(RColorBrewer)) install.packages("RColorBrewer",
    repos = "http://cran.r-project.org"); library(RColorBrewer)
if (!require(reshape)) install.packages("reshape",
    repos = "http://cran.r-project.org"); library(reshape)

首先是一个简单的例子

#Create a list of colors to be used with scale_manual
palette.l <- list()
palette.l[[1]] <- c('red', 'blue', 'green')
palette.l[[2]] <- c('pink', 'blue', 'yellow')
# Store each ggplot in a list object
plot.l <- list()
#Loop it
for(i in 1:2){
  plot.l[[i]] <- qplot(mpg, wt, data = mtcars, colour = factor(cyl)) +
    scale_colour_manual(values = palette.l[[i]])
}
  

在我的会话plot.l [1]中将使用palette.l [2]中的颜色绘制。

我的具体案例

功能

安排地块

ArrangeGraph <- function(..., nrow=NULL, ncol=NULL, as.table=FALSE) {
  dots <- list(...)
  n <- length(dots)
  if(is.null(nrow) & is.null(ncol)) { nrow = floor(n/2) ; ncol = ceiling(n/nrow)}
  if(is.null(nrow)) { nrow = ceiling(n/ncol)}
  if(is.null(ncol)) { ncol = ceiling(n/nrow)}
  ## NOTE see n2mfrow in grDevices for possible alternative
  grid.newpage()
  pushViewport(viewport(layout=grid.layout(nrow,ncol)))
  ii.p <- 1
  for(ii.row in seq(1, nrow)) {
    ii.table.row <- ii.row
    if(as.table) {ii.table.row <- nrow - ii.table.row + 1}
    for(ii.col in seq(1, ncol)) {
      ii.table <- ii.p
      if(ii.p > n) break
      print(dots[[ii.table]], vp=VPortLayout(ii.table.row, ii.col))
      ii.p <- ii.p + 1
    }
  }
}

视见

VPortLayout <- function(x, y) viewport(layout.pos.row=x, layout.pos.col=y)

物种数据集

bd.aves.1 <- structure(list(quad = c("K113", "K114", "K114", "K114", "K114",...
due to limited body character number limit, please download entire code from
https://docs.google.com/open?id=0BxSZDr4eTnb9R09iSndzZjBMS28

物种清单

list.esp.1 <- c("Sylv mela", "Saxi rube","Ocea leuc")#
# download from the above link

一些分类法和其他数据

txcon.1 <- structure(list(id = c(156L, 359L, 387L), grupo = c("Aves", "Aves",# 
# download from the above link

四季

kSeason.1 <- c("Inverno", "Primavera", "Outono")

样本网格

grid500.df.1 <- structure(list(id = c("K113", "K113", "K113", "K113", "K113",#... 
# download from the above link

其他映射元素

海岸线

coastline.df.1 <- structure(list(long = c(182554.963670234, 180518, 178865.39,#...
# download from the above link

标签展示位置调整

kFacx1 <- c(9000, -13000, -10000, -12000)

R代码

for(i in listsp.1) { # LOOP 1 - Species
  # Set up objects 
  sist.i <- list() # Sistematic observations
  nsist.i <- list() # Non-Sistematic observations
  breaks.nind.1 <- list() # Breaks on abundances
  ## Grid and merged dataframe
  spij.1 <- list() # Stores a dataframe for sp i at season j
  ## Palette build
  classes.1 <- list()
  cllevels.1 <- list()
  palette.nind.1 <- list() # Color palette
  ## Maps
  grid500ij.1 <- list() # Grid for species i at season j
  map.dist.ij.1 <- NULL
  for(j in 1:length(kSeason.1)) { # LOOP 2 - Seasons
    # j assume each season: Inverno, Primavera, Outono
    # Sistematic occurences ===================================================
    sist.i.tmp <- nrow(subset(bd.aves.1, esp == i & cod_tipo %in% sistematica &
      periodo == kSeason.1[j]))
    if (sist.i.tmp!= 0) { # There is sistematic entries, Then:
      sist.i[[j]]<- ddply(subset(bd.aves.1,
                                 esp == i & cod_tipo %in% sistematica & 
                                   periodo == kSeason.1[j]),
                          .(periodo, quad), summarise, nind = sum(n_ind),
                          codnid = max(cod_nidi))
    } else { # No Sistematic entries, Then: 
      sist.i[[j]] <- data.frame('quad' = NA, 'periodo' = NA, 'nind' = NA, 
                                'codnid' = NA, stringsAsFactors = F)
    }
    # Additional Entries (RS1) e other non-sistematic entries  (biblio) =======
    nsist.tmp.i = nrow(subset(bd.aves.1, esp == i & !cod_tipo %in% sistematica &
      periodo == kSeason.1[j]))
    if (nsist.tmp.i != 0) { # RS1 and biblio entries, Then:
      nsist.i[[j]] <- subset(bd.aves.1,
                             esp == i & !cod_tipo %in% sistematica &
                               periodo == kSeason.1[j] & 
                               !quad %in% if (nrow(sist.i[[j]]) != 0) {
                                            subset(sist.i[[j]],
                                                   select = quad)$quad
                                          } else NA,
                             select = c(quad, periodo, cod_tipo, cod_nidi)
                             )
      names(nsist.i[[j]])[4] <- 'codnid'
    } else { # No RS1 and biblio entries, Then:      
        nsist.i[[j]] = data.frame('quad' = NA, 'periodo' = NA, 'cod_tipo' = NA,
                                'codnid' = NA, stringsAsFactors = F)
      }
    # Quantile breaks =========================================================
    if (!is.na(sist.i[[j]]$nind[1])) {
      breaks.nind.1[[j]] <- c(0,
                            unique(
                              ceiling(
                                quantile(unique(
                                  subset(sist.i[[j]], is.na(nind) == F)$nind), 
                                         q = seq(0, 1, by = 0.25)))))
    } else {
        breaks.nind.1[[j]] <- 0
      }
    # =========================================================================
    # Build Species dataframe and merge to grid
    # =========================================================================
    if (!is.na(sist.i[[j]]$nind[1])) { # There are Sistematic entries, Then:
      spij.1[[j]] <- merge(unique(subset(grid500df.1, select = id)),
                         sist.i[[j]],
                         by.x = 'id', by.y = 'quad', all.x = T)
      # Adjust abundances when equals to NA ===================================
      spij.1[[j]]$nind[is.na(spij.1[[j]]$nind) == T] <- 0
      # Break abundances to create discrete variable ==========================
      spij.1[[j]]$cln <- if (length(breaks.nind.1[[j]]) > 2) {
        cut(spij.1[[j]]$nind, breaks = breaks.nind.1[[j]], 
            include.lowest = T, right = F)
        } else {
            cut2(spij.1[[j]]$nind, g = 2)
          }
      # Variable Abundance ====================================================
      classes.1[[j]] = nlevels(spij.1[[j]]$cln)
      cllevels.1[[j]] = levels(spij.1[[j]]$cln)
      # Color Palette for abundances - isolated Zero class (color #FFFFFF) ====
      if (length(breaks.nind.1[[j]]) > 2) {
        palette.nind.1[[paste(kSeason.1[j])]] = c("#FFFFFF", brewer.pal(length(
          cllevels.1[[j]]) - 1, "YlOrRd"))
      } else {
          palette.nind.1[[paste(kSeason.1[j])]] = c(
            "#FFFFFF",  brewer.pal(3, "YlOrRd"))[1:classes.1[[j]]]
        }
        names(palette.nind.1[[paste(kSeason.1[j])]])[1 : length(
          palette.nind.1[[paste(kSeason.1[j])]])] <- cllevels.1[[j]]
      # Add RS1 and bilbio values to palette ==================================
      palette.nind.1[[paste(kSeason.1[j])]][length(
        palette.nind.1[[paste(kSeason.1[j])]]) + 1] <- '#CCC5AF'
      names(palette.nind.1[[paste(kSeason.1[j])]])[length(
        palette.nind.1[[paste(kSeason.1[j])]])] <- 'Suplementar'
      palette.nind.1[[paste(kSeason.1[j])]][length(
        palette.nind.1[[paste(kSeason.1[j])]]) + 1] <- '#ADCCD7'
      names(palette.nind.1[[paste(kSeason.1[j])]])[length(
        palette.nind.1[[paste(kSeason.1[j])]])] <- 'Bibliografia'
      # Merge species i dataframe to grid map =================================
      grid500ij.1[[j]] <- subset(grid500df.1, select = c(id, long, lat, order))
      grid500ij.1[[j]]$cln = merge(grid500ij.1[[j]],
                                 spij.1[[j]],
                                 by.x = 'id', by.y = 'id', all.x = T)$cln
      # Adjust factor levels of cln variable - Non-Sistematic data ============
      levels(grid500ij.1[[j]]$cln) <- c(levels(grid500ij.1[[j]]$cln), 'Suplementar',
                                      'Bibliografia')
      if (!is.na(nsist.i[[j]]$quad[1])) {
        grid500ij.1[[j]]$cln[grid500ij.1[[j]]$id %in% subset(
          nsist.i[[j]], cod_tipo == 'RS1', select = quad)$quad] <- 'Suplementar'
        grid500ij.1[[j]]$cln[grid500ij.1[[j]]$id %in% subset(
          nsist.i[[j]], cod_tipo == 'biblio', select = quad)$quad] <- 'Bibliografia'
      }
    } else { # No Sistematic entries, Then:
        if (!is.na(nsist.i[[j]]$quad[1])) { # RS1 or Biblio entries, Then:
          grid500ij.1[[j]] <- grid500df
          grid500ij.1[[j]]$cln <- '0'
          grid500ij.1[[j]]$cln <- factor(grid500ij.1[[j]]$cln)
          levels(grid500ij.1[[j]]$cln) <- c(levels(grid500ij.1[[j]]$cln),
                                          'Suplementar', 'Bibliografia')
          grid500ij.1[[j]]$cln[grid500ij.1[[j]]$id %in% subset(
            nsist.i[[j]], cod_tipo == 'RS1', 
            select = quad)$quad] <- 'Suplementar'
          grid500ij.1[[j]]$cln[grid500ij.1[[j]]$id %in% subset(
            nsist.i[[j]],cod_tipo == 'biblio', 
            select = quad)$quad] <- 'Bibliografia'
        } else { # No entries, Then:
            grid500ij.1[[j]] <- grid500df
            grid500ij.1[[j]]$cln <- '0' 
            grid500ij.1[[j]]$cln <- factor(grid500ij.1[[j]]$cln)
            levels(grid500ij.1[[j]]$cln) <- c(levels(grid500ij.1[[j]]$cln),
                                            'Suplementar', 'Bibliografia')      
          }
      } # End of Species dataframe build
    # Distribution Map for  species i at season j =============================    
    if (!is.na(sist.i[[j]]$nind[1])) { # There is sistematic entries, Then:
      map.dist.ij.1[[paste(kSeason.1[j])]] <- ggplot(grid500ij.1[[j]],
                                                  aes(x = long, y = lat)) +
        geom_polygon(aes(group = id, fill = cln), colour = 'grey80') +
        coord_equal() +
        scale_x_continuous(limits = c(100000, 180000)) +
        scale_y_continuous(limits = c(-4000, 50000)) +
        scale_fill_manual(
          name = paste("LEGEND",
                       '\nSeason: ', kSeason.1[j],
                       '\n% of Occupied Cells : ',
                         sprintf("%.1f%%", (length(unique(
                           grid500ij.1[[j]]$id[grid500ij.1[[j]]$cln != levels(
                           grid500ij.1[[j]]$cln)[1]]))/12)*100), # percent 
                        sep = ""
                       ),
          # Set Limits
          limits = names(palette.nind.1[[j]])[2:length(names(palette.nind.1[[j]]))],
          values = palette.nind.1[[j]][2:length(names(palette.nind.1[[j]]))],
          drop = F) +
          opts(
            panel.background = theme_rect(),
            panel.grid.major = theme_blank(),
            panel.grid.minor = theme_blank(),
            axis.ticks = theme_blank(),
            title = txcon.1$especie[txcon.1$esp == i],
            plot.title = theme_text(size = 10, face = 'italic'),
            axis.text.x = theme_blank(),
            axis.text.y = theme_blank(),
            axis.title.x = theme_blank(),
            axis.title.y = theme_blank(),
            legend.title = theme_text(hjust = 0,size = 10.5),
            legend.text = theme_text(hjust = -0.2, size = 10.5)
          ) +
          # Shoreline
          geom_path(inherit.aes = F, aes(x = long, y = lat),
                    data = coastline.df.1, colour = "#997744") +
          # Add localities
          geom_point(inherit.aes = F, aes(x = x, y = y),  colour = 'grey20',
                     data = localidades, size = 2) +
          # Add labels
          geom_text(inherit.aes = F, aes(x = x, y = y, label = c('Burgau',
                                                                 'Sagres')),
                    colour = "black",
                    data = data.frame(x = c(142817 + kFacx1[1], 127337 + kFacx1[4]),
                                      y = c(11886, 3962), size = 3))
    } else { # NO sistematic entries,then:
        map.dist.ij.1[[paste(kSeason.1[j])]] <- ggplot(grid500ij.1[[j]],
                                                    aes(x = long, y = lat)) +
          geom_polygon(aes.inherit = F, aes(group = id, fill = cln),
                       colour = 'grey80') +
          #scale_color_manual(values = kCorLimiteGrid) +
          coord_equal() +
          scale_x_continuous(limits = c(100000, 40000)) +
          scale_y_continuous(limits = c(-4000, 180000)) +
          scale_fill_manual(
            name = paste('LEGENDA',
                         '\nSeason: ', kSeason.1[j],
                         '\n% of Occupied Cells :',
                         sprintf("%.1f%%", (length(unique(
                           grid500ij.1[[j]]$id[grid500ij.1[[j]]$cln != levels(
                           grid500ij.1[[j]]$cln)[1]]))/12 * 100)), # percent 
                         sep = ''),
            limits = names(kPaletaNsis)[2:length(names(kPaletaNsis))],
            values = kPaletaNsis[2:length(names(kPaletaNsis))],
            drop = F) +
            opts(
              panel.background = theme_rect(),
              panel.grid.major = theme_blank(),
              panel.grid.minor = theme_blank(),
              title = txcon.1$especie[txcon.1$esp == i],
              plot.title = theme_text(size = 10, face = 'italic'),
              axis.ticks = theme_blank(),
              axis.text.x = theme_blank(),
              axis.text.y = theme_blank(),
              axis.title.x = theme_blank(),
              axis.title.y = theme_blank(),
              legend.title = theme_text(hjust = 0,size = 10.5),
              legend.text = theme_text(hjust = -0.2, size = 10.5)
            ) +
            # Add Shoreline
            geom_path(inherit.aes = F, data = coastline.df.1,
                      aes(x = long, y = lat),
                      colour = "#997744") +
            # Add Localities
            geom_point(inherit.aes = F, aes(x = x, y = y),
                       colour = 'grey20',
                       data = localidades, size = 2) +
            # Add labels
            geom_text(inherit.aes = F, aes(x = x, y = y,
                                           label = c('Burgau', 'Sagres')),
                      colour = "black",
                      data = data.frame(x = c(142817 + kFacx1[1],
                                              127337 + kFacx1[4],),
                                        y = c(11886, 3962)),
                      size = 3)
      } # End of Distribution map building for esp i and j seasons
  } # Fim do LOOP 2: j Estacoes
  # Print Maps
  png(file = paste('panel_species',i,'.png', sep = ''), res = 96, 
      width = 800, height = 800)
  ArrangeGraph(map.dist.ij.1[[paste(kSeason.1[3])]],
               map.dist.ij.1[[paste(kSeason.1[2])]],
               map.dist.ij.1[[paste(kSeason.1[1])]],
               ncol = 2, nrow = 2)
  dev.off()
  graphics.off()
} # End of LOOP 1

map.dist.ij.1 [[paste(kSeason.1 [3])]]是唯一一个应用于多边形的调色板,但是为每个j地图定义了图例项目。

使用R代码输出

enter image description here

  

正如我们所见,传说还可以,但没有颜色

希望不要错过任何东西。对不起有些遗失的葡萄牙语术语。

1 个答案:

答案 0 :(得分:1)

老实说,我没有仔细考虑你的代码来解决你的具体问题 - 有点太过分了! - 但是对于你的演示示例,在循环中添加print(plot.l[[i]])

#Create a list of colors to be used with scale_manual
palette.l <- list()
palette.l[[1]] <- c('red', 'blue', 'green')
palette.l[[2]] <- c('pink', 'blue', 'yellow')

# Store each ggplot in a list object
plot.l <- list()

# Loop it
for(i in 1:2) {
  plot.l[[i]] <- qplot(mpg, wt, data = mtcars, colour = factor(cyl)) +
    scale_colour_manual(values = palette.l[[i]])
  print(plot.l[[i]]) ### Added to your loop
}

在你的最小例子的情况下,这也有效(首先不需要创建一个空列表来存储你的情节),我认为至少看起来更清洁。我不确定是否可以调整类似的东西来适应你的大型场景。

#Create a list of colors to be used with scale_manual
palette.l <- list(c('red', 'blue', 'green'),
                  c('pink', 'blue', 'yellow'))

p <- qplot(mpg, wt, data = mtcars, colour = factor(cyl))

# Use lapply and "force" to get your plots in a list    
plot.l <- lapply(palette.l, 
                 function(x) { 
                   force(x)
                   p + scale_color_manual(values = x) 
                 })