@property可以在SQLAlchemy中同时呈现标量和集合行为吗?

时间:2012-08-27 19:41:12

标签: python database orm properties sqlalchemy

我正在转换库以使用SQLAlchemy作为数据存储区。我喜欢PickleType列的灵活性,但是当腌制SA对象(表行)时它似乎不能很好地工作。即使我重载setstate和getstate来进行查询+会话合并,但是在pickle边界上没有引用完整性。这意味着我无法查询对象集合。

class Bar(Base):
    id = Column(Integer, primary_key=True)
    __tablename__ = 'bars'
    foo_id = Column(Integer, ForeignKey('foos.id'), primary_key=True)

class Foo(Base):
    __tablename__ = 'foos'
    values = Column(PickleType)
    #values = relationship(Bar)  # list interface (one->many), but can't assign a scalar or use a dictionary
    def __init__(self):
        self.values = [Bar(), Bar()]

        # only allowed with PickleType column
        #self.values = Bar()
        #self.values = {'one' : Bar()}
        #self.values = [ [Bar(), Bar()], [Bar(), Bar()]]

# get all Foo's with a Bar whose id=1
session.query(Foo).filter(Foo.values.any(Bar.id == 1)).all()

一种解决方法是实现我自己的可变对象类型,就像完成here一样。我想象有一种扁平化方案可以遍历这些集合,并将它们添加到更简单的一对多关系中。也许扁平的列表可能必须是对pickle集合对象的弱化?

跟踪变化和参考听起来没什么好玩的,我找不到任何人在其他地方腌制SA行的例子(可能表明我的设计不好?)。有什么建议吗?

编辑1 : 经过一些discussion我简化了请求。我正在寻找一个可以表现为 标量或集合的单一属性。这是我的(失败)尝试:

from sqlalchemy import MetaData, Column, Integer, PickleType, String, ForeignKey, create_engine
from sqlalchemy.orm import relationship, Session
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm.collections import attribute_mapped_collection


# from http://www.sqlalchemy.org/trac/browser/examples/vertical
from sqlalchemy_examples.vertical import dictlike_polymorphic as dictlike

metadata = MetaData()
Base = declarative_base()
engine = create_engine('sqlite://', echo=True)
Base.metadata.bind = engine
session = Session(engine)


class AnimalFact(dictlike.PolymorphicVerticalProperty, Base):
    """key/value attribute whose value can be one of several types"""
    __tablename__ = 'animalfacts'
    type_map = {#str: ('string', 'str_value'),
                list: ('list', 'list_value'),
                tuple: ('tuple', 'tuple_value')}
    id = Column(Integer, primary_key=True)
    animal_id = Column(Integer, ForeignKey('animal.id'), primary_key=True)
    key = Column(String, primary_key=True)
    type = Column(String)
    #str_value = Column(String)
    list_value = relationship('StringEntry')
    tuple_value = relationship('StringEntry2')


class Animal(Base, dictlike.VerticalPropertyDictMixin):
    __tablename__ = 'animal'
    _property_type = AnimalFact
    _property_mapping = 'facts'

    id = Column(Integer, primary_key=True)
    name = Column(String)
    facts = relationship(AnimalFact, backref='animal',
                          collection_class=attribute_mapped_collection('key'))

    def __init__(self, name):
        self.name = name


class StringEntry(Base):
    __tablename__ = 'stringentry'
    id = Column(Integer, primary_key=True)
    animalfacts_id = Column(Integer, ForeignKey('animalfacts.id'))
    value = Column(String)

    def __init__(self, value):
        self.value = value


class StringEntry2(Base):
    __tablename__ = 'stringentry2'
    id = Column(Integer, primary_key=True)
    animalfacts_id = Column(Integer, ForeignKey('animalfacts.id'))
    value = Column(String)

    def __init__(self, value):
        self.value = value

Base.metadata.create_all()


a = Animal('aardvark')
a['eyes'] = [StringEntry('left side'), StringEntry('right side')]  # works great
a['eyes'] = (StringEntry2('left side'), StringEntry2('right side'))  # works great
#a['cute'] = 'sort of'  # failure

1 个答案:

答案 0 :(得分:3)

PickleType实际上是一种围绕边缘情况的hacky方式,在这种情况下你有一些你想要推开的任意对象。当你使用PickleType时,你会放弃任何关系优势,包括能够过滤/查询它们等等。

因此将一个ORM映射对象放在Pickle中基本上是一个糟糕的主意。

如果需要标量值的集合,请将传统映射和relationship()与association_proxy结合使用。请参阅http://docs.sqlalchemy.org/en/rel_0_7/orm/extensions/associationproxy.html#simplifying-scalar-collections

“或词典”。使用attribute_mapped_collection:http://docs.sqlalchemy.org/en/rel_0_7/orm/collections.html#dictionary-collections

“词典加标量”:结合了attribute_mapped_collection和association_proxy:http://docs.sqlalchemy.org/en/rel_0_7/orm/extensions/associationproxy.html#proxying-to-dictionary-based-collections

修改1 : 好吧,你在那里挖掘了一个非常深奥而复杂的例子。 association_proxy是一种更容易解决这些情况的方法,你希望对象像标量一样运行,所以就是这样,没有“垂直”示例的所有疯狂样板,我会避免它,因为它太复杂了。您的示例似乎尚未确定主键样式,因此我选择了复合版本。代理+复合不能在一个表中混合(它可以,但它的关系不正确。键应该是标识行的最小单位 - http://en.wikipedia.org/wiki/Unique_key是一个很好的顶级读取到各种主题有关这个)。

from sqlalchemy import Integer, String, Column, create_engine, ForeignKey, ForeignKeyConstraint
from sqlalchemy.orm import relationship, Session
from sqlalchemy.orm.collections import attribute_mapped_collection
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.ext.associationproxy import association_proxy

Base = declarative_base()

class AnimalFact(Base):
    """key/value attribute whose value can be either a string or a list of strings"""
    __tablename__ = 'animalfacts'

    # use either surrogate PK id, or the composite animal_id/key - but
    # not both.   id/animal_id/key all together is not a proper key.
    # Personally I'd go for "id" here, but here's the composite version.

    animal_id = Column(Integer, ForeignKey('animal.id'), primary_key=True)
    key = Column(String, primary_key=True)

    # data
    str_value = Column(String)
    _list_value = relationship('StringEntry')

    # proxy list strings
    list_proxy = association_proxy('_list_value', 'value')

    def __init__(self, key, value):
        self.key = key
        self.value = value

    @property
    def value(self):
        if self.str_value is not None:
            return self.str_value
        else:
            return self.list_proxy

    @value.setter
    def value(self, value):
        if isinstance(value, basestring):
            self.str_value = value
        elif isinstance(value, list):
            self.list_proxy = value
        else:
            assert False

class Animal(Base):
    __tablename__ = 'animal'

    id = Column(Integer, primary_key=True)
    name = Column(String)
    _facts = relationship(AnimalFact, backref='animal',
                          collection_class=attribute_mapped_collection('key'))
    facts = association_proxy('_facts', 'value')

    def __init__(self, name):
        self.name = name

    # dictionary interface around "facts".
    # I'd just use "animal.facts" here, but here's how to skip that.
    def __getitem__(self, key):
        return self.facts.__getitem__(key)

    def __setitem__(self, key, value):
        self.facts.__setitem__(key, value)

    def __delitem__(self, key):
        self.facts.__delitem__(key)

    def __contains__(self, key):
        return self.facts.__contains__(key)

    def keys(self):
        return self.facts.keys()


class StringEntry(Base):
    __tablename__ = 'myvalue'
    id = Column(Integer, primary_key=True)
    animal_id = Column(Integer)
    key = Column(Integer)
    value = Column(String)

    # because AnimalFact has a composite PK, we need
    # a composite FK.
    __table_args__ = (ForeignKeyConstraint(
                        ['key', 'animal_id'],
                        ['animalfacts.key', 'animalfacts.animal_id']),
                    )
    def __init__(self, value):
        self.value = value

engine = create_engine('sqlite://', echo=True)
Base.metadata.create_all(engine)

session = Session(engine)


# create a new animal
a = Animal('aardvark')

a['eyes'] = ['left side', 'right side']

a['cute'] = 'sort of'

session.add(a)
session.commit()
session.close()

for animal in session.query(Animal):
    print animal.name, ",".join(["%s" % animal[key] for key in animal.keys()])