如何将2个csv文件与公共列值组合,但两个文件的行数不同

时间:2012-08-27 10:29:39

标签: python csv

file1.csv contains 2 columns: c11;c12
file2.csv contains 2 columns: c21;c22
Common column: c11, c21

示例:

f1.csv

a;text_a            
b;text_b            
f;text_f            
x;text_x

f2.csv

a;path_a
c;path_c
d;path_d
k;path_k
l;path_l
m:path_m

输出f1 + f2:

a;text_a;path_a
b;text_b,''
c;'';path_c
d;'';path_d
f;text_f;''
k;'';path_k
l;'';path_l
m;'';path_m
x;text_x;''

如何使用python实现它?

2 个答案:

答案 0 :(得分:3)

使用csv模块很容易做到:

import csv

with open('file1.csv') as f:
    r = csv.reader(f, delimiter=';')
    dict1 = {row[0]: row[1] for row in r}

with open('file2.csv') as f:
    r = csv.reader(f, delimiter=';')
    dict2 = {row[0]: row[1] for row in r}

keys = set(dict1.keys() + dict2.keys())
with open('output.csv', 'wb') as f:
    w = csv.writer(f, delimiter=';')
    w.writerows([[key, dict1.get(key, "''"), dict2.get(key, "''")]
                 for key in keys])

答案 1 :(得分:0)

为了基于一个或多个公共列合并多个文件(甚至> 2),python中最好和最有效的方法之一就是使用“brewery”。您甚至可以指定合并时需要考虑哪些字段以及需要保存哪些字段。

import brewery
from brewery
import ds
import sys

sources = [
    {"file": "grants_2008.csv",
     "fields": ["receiver", "amount", "date"]},
    {"file": "grants_2009.csv",
     "fields": ["id", "receiver", "amount", "contract_number", "date"]},
    {"file": "grants_2010.csv",
     "fields": ["receiver", "subject", "requested_amount", "amount", "date"]}
]

创建所有字段的列表并添加文件名以存储有关数据记录来源的信息。浏览源定义并收集字段:

for source in sources:
    for field in source["fields"]:
        if field not in all_fields:

out = ds.CSVDataTarget("merged.csv")
out.fields = brewery.FieldList(all_fields)
out.initialize()

for source in sources:

    path = source["file"]

# Initialize data source: skip reading of headers
# use XLSDataSource for XLS files
# We ignore the fields in the header, because we have set-up fields
# previously. We need to skip the header row.

    src = ds.CSVDataSource(path,read_header=False,skip_rows=1)

    src.fields = ds.FieldList(source["fields"])

    src.initialize()


    for record in src.records():

   # Add file reference into ouput - to know where the row comes from
    record["file"] = path

        out.append(record)

# Close the source stream

    src.finalize()


cat merged.csv | brewery pipe pretty_printer