在Python中使用R expand.grid()函数

时间:2012-08-26 14:24:14

标签: python r

是否有类似于R中的expand.grid()函数的Python函数?提前谢谢。

(编辑)下面是这个R函数的描述和一个例子。

Create a Data Frame from All Combinations of Factors

Description:

     Create a data frame from all combinations of the supplied vectors
     or factors.  

> x <- 1:3
> y <- 1:3
> expand.grid(x,y)
  Var1 Var2
1    1    1
2    2    1
3    3    1
4    1    2
5    2    2
6    3    2
7    1    3
8    2    3
9    3    3

(EDIT2)以下是rpy包的示例。我想获得相同的输出对象,但不使用R:

>>> from rpy import *
>>> a = [1,2,3]
>>> b = [5,7,9]
>>> r.assign("a",a)
[1, 2, 3]
>>> r.assign("b",b)
[5, 7, 9]
>>> r("expand.grid(a,b)")
{'Var1': [1, 2, 3, 1, 2, 3, 1, 2, 3], 'Var2': [5, 5, 5, 7, 7, 7, 9, 9, 9]}

编辑02/09/2012:我真的迷失了Python。 Lev Levitsky在他的回答中给出的代码对我不起作用:

>>> a = [1,2,3]
>>> b = [5,7,9]
>>> expandgrid(a, b)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "<stdin>", line 2, in expandgrid
NameError: global name 'itertools' is not defined

然而,似乎安装了itertools模块(键入from itertools import *不会返回任何错误消息)

11 个答案:

答案 0 :(得分:24)

只需使用列表推导:

>>> [(x, y) for x in range(5) for y in range(5)]

[(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (1, 0), (1, 1), (1, 2), (1, 3), (1, 4), (2, 0), (2, 1), (2, 2), (2, 3), (2, 4), (3, 0), (3, 1), (3, 2), (3, 3), (3, 4), (4, 0), (4, 1), (4, 2), (4, 3), (4, 4)]

如果需要,转换为numpy数组:

>>> import numpy as np
>>> x = np.array([(x, y) for x in range(5) for y in range(5)])
>>> x.shape
(25, 2)

我测试了高达10000 x 10000,python的性能与R中的expand.grid相当。使用元组(x,y)比使用列表[x,y]快40%左右理解。

要么...

使用np.meshgrid大约快3倍,内存密集程度更低。

%timeit np.array(np.meshgrid(range(10000), range(10000))).reshape(2, 100000000).T
1 loops, best of 3: 736 ms per loop
R中的

> system.time(expand.grid(1:10000, 1:10000))
   user  system elapsed 
  1.991   0.416   2.424 

请记住,R具有基于1的数组,而Python基于0。

答案 1 :(得分:17)

来自product

itertools是解决方案的关键。它产生输入的笛卡尔积。

from itertools import product

def expand_grid(dictionary):
   return pd.DataFrame([row for row in product(*dictionary.values())], 
                       columns=dictionary.keys())

dictionary = {'color': ['red', 'green', 'blue'], 
              'vehicle': ['car', 'van', 'truck'], 
              'cylinders': [6, 8]}

>>> expand_grid(dictionary)
    color  cylinders vehicle
0     red          6     car
1     red          6     van
2     red          6   truck
3     red          8     car
4     red          8     van
5     red          8   truck
6   green          6     car
7   green          6     van
8   green          6   truck
9   green          8     car
10  green          8     van
11  green          8   truck
12   blue          6     car
13   blue          6     van
14   blue          6   truck
15   blue          8     car
16   blue          8     van
17   blue          8   truck

答案 2 :(得分:14)

这是一个示例,它提供类似于您需要的输出:

import itertools
def expandgrid(*itrs):
   product = list(itertools.product(*itrs))
   return {'Var{}'.format(i+1):[x[i] for x in product] for i in range(len(itrs))}

>>> a = [1,2,3]
>>> b = [5,7,9]
>>> expandgrid(a, b)
{'Var1': [1, 1, 1, 2, 2, 2, 3, 3, 3], 'Var2': [5, 7, 9, 5, 7, 9, 5, 7, 9]}

差异与itertools.product the rightmost element advances on every iteration中的事实有关。如果重要,可以通过巧妙地对product列表进行排序来调整函数。

答案 3 :(得分:12)

我已经想了一段时间,我对目前提出的解决方案感到满意,所以我想出了自己的解决方案,这个方法相当简单(但可能更慢)。该函数使用numpy.meshgrid制作网格,然后将网格展平为1d数组并将它们放在一起:

def expand_grid(x, y):
    xG, yG = np.meshgrid(x, y) # create the actual grid
    xG = xG.flatten() # make the grid 1d
    yG = yG.flatten() # same
    return pd.DataFrame({'x':xG, 'y':yG}) # return a dataframe

例如:

import numpy as np
import pandas as pd

p, q = np.linspace(1, 10, 10), np.linspace(1, 10, 10)

def expand_grid(x, y):
    xG, yG = np.meshgrid(x, y) # create the actual grid
    xG = xG.flatten() # make the grid 1d
    yG = yG.flatten() # same
    return pd.DataFrame({'x':xG, 'y':yG})

print expand_grid(p, q).head(n = 20)

我知道这是一个老帖子,但我想我会分享我的简单版本!

答案 4 :(得分:8)

pandas documentation定义expand_grid函数:

def expand_grid(data_dict):
    """Create a dataframe from every combination of given values."""
    rows = itertools.product(*data_dict.values())
    return pd.DataFrame.from_records(rows, columns=data_dict.keys())

要使此代码生效,您需要以下两个导入:

import itertools
import pandas as pd

输出为pandas.DataFrame,这是Python中与R data.frame最具可比性的对象。

答案 5 :(得分:6)

从上述解决方案中,我做到了

import itertools
import pandas as pd

a = [1,2,3]
b = [4,5,6]
ab = list(itertools.product(a,b))
abdf = pd.DataFrame(ab,columns=("a","b"))

以下是输出

    a   b
0   1   4
1   1   5
2   1   6
3   2   4
4   2   5
5   2   6
6   3   4
7   3   5
8   3   6

答案 6 :(得分:3)

这是另一个返回pandas.DataFrame:

的版本
import itertools as it
import pandas as pd

def expand_grid(*args, **kwargs):
    columns = []
    lst = []
    if args:
        columns += xrange(len(args))
        lst += args
    if kwargs:
        columns += kwargs.iterkeys()
        lst += kwargs.itervalues()
    return pd.DataFrame(list(it.product(*lst)), columns=columns)

print expand_grid([0,1], [1,2,3])
print expand_grid(a=[0,1], b=[1,2,3])
print expand_grid([0,1], b=[1,2,3])

答案 7 :(得分:0)

您是否尝试过product的{​​{1}}?在我看来,比itertoolspandas除外一些方法更容易使用。请记住,此设置实际上将迭代器中的所有项目拉入列表,然后将其转换为meshgrid,因此请注意更高的维度或删除ndarray以获得更高维度的网格,除非您想要内存不足,您可以参考迭代器获取特定的组合。尽管如此我强烈推荐np.asarray(list(combs))

meshgrid

我从中得到以下输出:

#Generate square grid from axis
from itertools import product
import numpy as np
a=np.array(list(range(3)))+1 # axis with offset for 0 base index to 1
points=product(a,repeat=2) #only allow repeats for (i,j), (j,i) pairs with i!=j
np.asarray(list(points))   #convert to ndarray

答案 8 :(得分:0)

Scikit的ParameterGrid函数与expand_grid(R的)相同。 示例:

from sklearn.model_selection import ParameterGrid
grid = [{'kernel': ['linear']}, {'kernel': ['rbf'], 'gamma': [1, 10]}]

您可以访问将其转换为列表的内容:

list(ParameterGrid(grid))

输出: [{'kernel': 'linear'}, {'gamma': 1, 'kernel': 'rbf'}, {'gamma': 10, 'kernel': 'rbf'}]

按索引访问元素

list(ParameterGrid(grid))[1]

您得到这样的东西:

{'gamma': 1, 'kernel': 'rbf'}

答案 9 :(得分:0)

这是任意数量的异构列类型的解决方案。它基于numpy.meshgrid。 Thomas Browne的答案适用于同类列类型。内特的答案适用于两列。

import pandas as pd
import numpy as np

def expand_grid(*xi, columns=None):
    """Expand 1-D arrays xi into a pd.DataFrame
    where each row is a unique combination of the xi.
    
    Args:
        x1, ..., xn (array_like): 1D-arrays to expand.
        columns (list, optional): Column names for the output
            DataFrame.
    
    Returns:
        Given vectors `x1, ..., xn` with lengths `Ni = len(xi)`
        a pd.DataFrame of shape (prod(Ni), n) where rows are:
        x1[0], x2[0], ..., xn-1[0], xn[0]
        x1[1], x2[0], ..., xn-1[0], xn[0]
        ...
        x1[N1 -1], x2[0], ..., xn-1[0], xn[0]
        x1[0], x2[1], ..., xn-1[0], xn[0]
        x1[1], x2[1], ..., xn-1[0], xn[0]
        ...
        x1[N1 - 1], x2[N2 - 1], ..., xn-1[Nn-1 - 1], xn[Nn - 1]
    """
    if columns is None:
        columns = pd.RangeIndex(0, len(xi))
    elif columns is not None and len(columns) != len(xi):
        raise ValueError(
            " ".join(["Expecting", str(len(xi)), "columns but", 
                str(len(columns)), "provided instead."])
        )
    return pd.DataFrame({
        coln: arr.flatten() for coln, arr in zip(columns, np.meshgrid(*xi))
    })

答案 10 :(得分:0)

the documentationpyjanitor可以说是最自然的解决方案,尤其是如果您来自R背景。

用法是将others参数设置为字典。词典中的项目可以具有不同的长度和类型。返回值是pandas DataFrame。

import janitor as jn

jn.expand_grid(others = {
    'x': range(0, 4),
    'y': ['a', 'b', 'c'],
    'z': [False, True]
})