Octave:逻辑回归:fmincg和fminunc之间的差异

时间:2012-08-24 18:52:28

标签: algorithm machine-learning neural-network octave

我经常使用fminunc来解决逻辑回归问题。我在网上看到Andrew Ng使用fmincg代替fminunc,使用相同的参数。结果不同,通常fmincg更准确,但不是太多。 (我将fmincg函数fminunc的结果与相同的数据进行比较)

所以,我的问题是:这两个功能有什么区别?每个功能实现了什么算法? (现在,我只是使用这些功能而不确切知道它们是如何工作的。)

谢谢:)

8 个答案:

答案 0 :(得分:41)

您必须查看fmincg的代码,因为它不是Octave的一部分。经过一些搜索,我发现它是Coursera机器学习课程提供的函数文件,作为家庭作业的一部分。阅读this question上的评论和答案,了解有关算法的讨论。

答案 1 :(得分:22)

与其他答案相反,这里提出fmincg和fminunc之间的主要区别在于准确性或速度,对某些应用来说,最重要的区别可能是内存效率。在Coursera的Andrew Ng的机器学习课程的编程练习4(即神经网络训练)中,ex4.m关于fmincg的评论是

  

%% ===================第八部分:训练NN ===================
  %你现在已经实现了训练神经元所需的所有代码   %网络。为了训练你的神经网络,我们现在将使用“fmincg”,其中   %是一个与“fminunc”类似的功能。回想一下这些   %高级优化器能够有效地训练我们的成本函数   %我们为他们提供梯度计算。

与原始海报一样,我也很好奇ex4.m的结果可能会因fminunc而不是fmincg而有所不同。所以我试图替换fmincg调用

options = optimset('MaxIter', 50);
[nn_params, cost] = fmincg(costFunction, initial_nn_params, options);

以下调用fminunc

options = optimset('GradObj', 'on', 'MaxIter', 50);
[nn_params, cost, exit_flag] = fminunc(costFunction, initial_nn_params, options);

但是在Windows上运行的32位版本的Octave中收到以下错误消息:

  

错误:内存耗尽或请求的大小对于Octave索引的范围而言太大   type - 尝试返回提示

在Windows上运行的32位MATLAB版本提供了更详细的错误消息:

  

使用查找时出错   内存不足。键入HELP MEMORY以获取选项。
  spones中的错误(第14行)
  [i,j] = find(S);
  颜色错误(第26行)
  J = spones(J);
  sfminbx出错(第155行)
      group = color(Hstr,p);
  fminunc出错(第408行)
     [x,FVAL,〜,EXITFLAG,OUTPUT,GRAD,HESSIAN] = sfminbx(funfcn,x,l,u,...

  ex4中的错误(第205行)
  [nn_params,cost,exit_flag] = fminunc(costFunction,initial_nn_params,options);

笔记本电脑上的MATLAB内存命令报告:

  

最大可能阵列:2046 MB(2.146e + 09字节)*
  可用于所有阵列的内存:3402 MB(3.568e + 09字节)**
  MATLAB使用的内存:373 MB(3.910e + 08字节)
  物理内存(RAM):3561 MB(3.734e + 09字节)
  *受限于可用的连续虚拟地址空间   **受虚拟地址空间限制。

我以前认为Ng教授选择使用fmincg来训练ex4.m神经网络(具有400个输入功能,401包括偏置输入)以提高训练速度。但是,现在我相信他使用fmincg的原因是为了提高内存效率,以便在32位版本的Octave / MATLAB上进行训练。关于在Windows操作系统上运行64位构建Octave的必要工作的简短讨论是here.

答案 2 :(得分:12)

根据Andrew Ng本人的说法,fmincg用于获得更准确的结果(请记住,在任何一种情况下,您的成本函数都是相同的,并且您的假设不会更简单或更复杂),但因为它更多有效地进行梯度下降,尤其是复杂的假设。他自己似乎使用fminunc假设具有很少的特征,但是fmincg它有数百个。

答案 3 :(得分:8)

  

为什么fmincg有效?

这是源代码的副本,其中包含解释所使用的各种算法的注释。这是一种愚蠢的行为,因为当学会区分狗和椅子时,孩子的大脑会做同样的事情。

这是fmincg.m的Octave源。

function [X, fX, i] = fmincg(f, X, options, P1, P2, P3, P4, P5)
% Minimize a continuous differentialble multivariate function. Starting point
% is given by "X" (D by 1), and the function named in the string "f", must
% return a function value and a vector of partial derivatives. The Polack-
% Ribiere flavour of conjugate gradients is used to compute search directions,
% and a line search using quadratic and cubic polynomial approximations and the
% Wolfe-Powell stopping criteria is used together with the slope ratio method
% for guessing initial step sizes. Additionally a bunch of checks are made to
% make sure that exploration is taking place and that extrapolation will not
% be unboundedly large. The "length" gives the length of the run: if it is
% positive, it gives the maximum number of line searches, if negative its
% absolute gives the maximum allowed number of function evaluations. You can
% (optionally) give "length" a second component, which will indicate the
% reduction in function value to be expected in the first line-search (defaults
% to 1.0). The function returns when either its length is up, or if no further
% progress can be made (ie, we are at a minimum, or so close that due to
% numerical problems, we cannot get any closer). If the function terminates
% within a few iterations, it could be an indication that the function value
% and derivatives are not consistent (ie, there may be a bug in the
% implementation of your "f" function). The function returns the found
% solution "X", a vector of function values "fX" indicating the progress made
% and "i" the number of iterations (line searches or function evaluations,
% depending on the sign of "length") used.
%
% Usage: [X, fX, i] = fmincg(f, X, options, P1, P2, P3, P4, P5)
%
% See also: checkgrad
%
% Copyright (C) 2001 and 2002 by Carl Edward Rasmussen. Date 2002-02-13
%
%
% (C) Copyright 1999, 2000 & 2001, Carl Edward Rasmussen
%
% Permission is granted for anyone to copy, use, or modify these
% programs and accompanying documents for purposes of research or
% education, provided this copyright notice is retained, and note is
% made of any changes that have been made.
%
% These programs and documents are distributed without any warranty,
% express or implied.  As the programs were written for research
% purposes only, they have not been tested to the degree that would be
% advisable in any important application.  All use of these programs is
% entirely at the user's own risk.
%
% [ml-class] Changes Made:
% 1) Function name and argument specifications
% 2) Output display
%

% Read options
if exist('options', 'var') && ~isempty(options) && isfield(options, 'MaxIter')
    length = options.MaxIter;
else
    length = 100;
end

RHO = 0.01;                            % a bunch of constants for line searches
SIG = 0.5;       % RHO and SIG are the constants in the Wolfe-Powell conditions
INT = 0.1;    % don't reevaluate within 0.1 of the limit of the current bracket
EXT = 3.0;                    % extrapolate maximum 3 times the current bracket
MAX = 20;                         % max 20 function evaluations per line search
RATIO = 100;                                      % maximum allowed slope ratio

argstr = ['feval(f, X'];                      % compose string used to call function
for i = 1:(nargin - 3)
  argstr = [argstr, ',P', int2str(i)];
end
argstr = [argstr, ')'];

if max(size(length)) == 2, red=length(2); length=length(1); else red=1; end
S=['Iteration '];

i = 0;                                            % zero the run length counter
ls_failed = 0;                             % no previous line search has failed
fX = [];
[f1 df1] = eval(argstr);                      % get function value and gradient
i = i + (length<0);                                            % count epochs?!
s = -df1;                                        % search direction is steepest
d1 = -s'*s;                                                 % this is the slope
z1 = red/(1-d1);                                  % initial step is red/(|s|+1)

while i < abs(length)                                      % while not finished
  i = i + (length>0);                                      % count iterations?!

  X0 = X; f0 = f1; df0 = df1;                   % make a copy of current values
  X = X + z1*s;                                             % begin line search
  [f2 df2] = eval(argstr);
  i = i + (length<0);                                          % count epochs?!
  d2 = df2'*s;
  f3 = f1; d3 = d1; z3 = -z1;             % initialize point 3 equal to point 1
  if length>0, M = MAX; else M = min(MAX, -length-i); end
  success = 0; limit = -1;                     % initialize quanteties
  while 1
    while ((f2 > f1+z1*RHO*d1) | (d2 > -SIG*d1)) & (M > 0)
      limit = z1;                                         % tighten the bracket
      if f2 > f1
        z2 = z3 - (0.5*d3*z3*z3)/(d3*z3+f2-f3);                 % quadratic fit
      else
        A = 6*(f2-f3)/z3+3*(d2+d3);                                 % cubic fit
        B = 3*(f3-f2)-z3*(d3+2*d2);
        z2 = (sqrt(B*B-A*d2*z3*z3)-B)/A;       % numerical error possible - ok!
      end
      if isnan(z2) | isinf(z2)
        z2 = z3/2;                  % if we had a numerical problem then bisect
      end
      z2 = max(min(z2, INT*z3),(1-INT)*z3);  % don't accept too close to limits
      z1 = z1 + z2;                                           % update the step
      X = X + z2*s;
      [f2 df2] = eval(argstr);
      M = M - 1; i = i + (length<0);                           % count epochs?!
      d2 = df2'*s;
      z3 = z3-z2;                    % z3 is now relative to the location of z2
    end
    if f2 > f1+z1*RHO*d1 | d2 > -SIG*d1
      break;                                                % this is a failure
    elseif d2 > SIG*d1
      success = 1; break;                                             % success
    elseif M == 0
      break;                                                          % failure
    end
    A = 6*(f2-f3)/z3+3*(d2+d3);                      % make cubic extrapolation
    B = 3*(f3-f2)-z3*(d3+2*d2);
    z2 = -d2*z3*z3/(B+sqrt(B*B-A*d2*z3*z3));        % num. error possible - ok!
    if ~isreal(z2) | isnan(z2) | isinf(z2) | z2 < 0   % num prob or wrong sign?
      if limit < -0.5                               % if we have no upper limit
        z2 = z1 * (EXT-1);                 % the extrapolate the maximum amount
      else
        z2 = (limit-z1)/2;                                   % otherwise bisect
      end
    elseif (limit > -0.5) & (z2+z1 > limit)          % extraplation beyond max?
      z2 = (limit-z1)/2;                                               % bisect
    elseif (limit < -0.5) & (z2+z1 > z1*EXT)       % extrapolation beyond limit
      z2 = z1*(EXT-1.0);                           % set to extrapolation limit
    elseif z2 < -z3*INT
      z2 = -z3*INT;
    elseif (limit > -0.5) & (z2 < (limit-z1)*(1.0-INT))   % too close to limit?
      z2 = (limit-z1)*(1.0-INT);
    end
    f3 = f2; d3 = d2; z3 = -z2;                  % set point 3 equal to point 2
    z1 = z1 + z2; X = X + z2*s;                      % update current estimates
    [f2 df2] = eval(argstr);
    M = M - 1; i = i + (length<0);                             % count epochs?!
    d2 = df2'*s;
  end                                                      % end of line search

  if success                                         % if line search succeeded
    f1 = f2; fX = [fX' f1]';
    fprintf('%s %4i | Cost: %4.6e\r', S, i, f1);
    s = (df2'*df2-df1'*df2)/(df1'*df1)*s - df2;      % Polack-Ribiere direction
    tmp = df1; df1 = df2; df2 = tmp;                         % swap derivatives
    d2 = df1'*s;
    if d2 > 0                                      % new slope must be negative
      s = -df1;                              % otherwise use steepest direction
      d2 = -s'*s;
    end
    z1 = z1 * min(RATIO, d1/(d2-realmin));          % slope ratio but max RATIO
    d1 = d2;
    ls_failed = 0;                              % this line search did not fail
  else
    X = X0; f1 = f0; df1 = df0;  % restore point from before failed line search
    if ls_failed | i > abs(length)          % line search failed twice in a row
      break;                             % or we ran out of time, so we give up
    end
    tmp = df1; df1 = df2; df2 = tmp;                         % swap derivatives
    s = -df1;                                                    % try steepest
    d1 = -s'*s;
    z1 = 1/(1-d1);
    ls_failed = 1;                                    % this line search failed
  end
  if exist('OCTAVE_VERSION')
    fflush(stdout);
  end
end
fprintf('\n');

答案 4 :(得分:1)

fmincg比fminunc更准确。它们两者所花费的时间几乎相同。在神经网络中或者通常没有权重的情况下,fminunc可以给出内存错误。所以fmincg的内存效率更高。

使用fminunc,精度为93.10,所用时间为11.3794秒。

Testing lrCostFunction() with regularization
Cost: 2.534819
Expected cost: 2.534819
Gradients:
 0.146561
 -0.548558
 0.724722
 1.398003
Expected gradients:
 0.146561
 -0.548558
 0.724722
 1.398003
Program paused. Press enter to continue.

Training One-vs-All Logistic Regression...
id = 1512324857357
Elapsed time is 11.3794 seconds.
Program paused. Press enter to continue.

Training Set Accuracy: 93.100000

使用fmincg,精确度为95.12,所用时间为11.7978秒。

Testing lrCostFunction() with regularization
Cost: 2.534819
Expected cost: 2.534819
Gradients:
 0.146561
 -0.548558
 0.724722
 1.398003
Expected gradients:
 0.146561
 -0.548558
 0.724722
 1.398003
Program paused. Press enter to continue.

Training One-vs-All Logistic Regression...
id = 1512325280047
Elapsed time is 11.7978 seconds.

Training Set Accuracy: 95.120000

答案 5 :(得分:1)

fmincg使用conjugate gradient method

如果你看一下这个链接的图片,你会发现CG方法的收敛速度比fminunc快得多,但它假定了一些我认为在fminunc方法中不需要的约束(BFGS) (共轭载体与非共轭载体)。

换句话说,fmincg方法比fminunc更快但更粗糙,因此它适用于大型矩阵(许多功能,如数千个),而较小的矩阵具有多达数百个功能。 希望这会有所帮助。

答案 6 :(得分:0)

使用fmincg优化成本函数。fmincg与fminunc相似,但在处理大量参数时效率更高。在这两种情况下,您的成本函数都是相同的,并且您的假设不会更简单或更复杂),但是因为对于特别复杂的假设,它在执行梯度下降时效率更高。

它用于提高内存利用率。

答案 7 :(得分:0)

fmincg是Coursera在Coursera上开发的内部函数,与fminunc不同,后者是内置的Octave函数。由于它们都用于逻辑回归,因此它们仅在一个方面有所不同。当要考虑的参数数量非常大时(如果与训练集的大小相比),fmincg的工作速度更快,并且处理过程比fminunc更准确。并且,当对传递给它的参数没有限制(不受限制)时,首选fminunc。