我有一个格式的数据框:
>df
stationid station gear sample lat lon date depth
1 25679 CORBOX150 UE4 53.9015 7.8617 15.07.1987 19
2 25681 UE9 Kern CORCRB050 UE9 54.0167 7.3982 15.07.1987 33
3 NA 54.0167 7.3982 15.07.1987 33
对stationid
的逻辑测试让我在正确的第一行旁边找到一条充满NAs的烦人行:
> df[df$stationid=="25679",]
stationid station gear sample lat lon date depth
1 25679 CORBOX150 UE4 53.9015 7.8617 15.07.1987 19
NA NA <NA> <NA> <NA> NA NA <NA> NA
为什么?
在df
的第3行的某处,我猜想事情会搞砸。
见下数据:
df<-structure(list(stationid = c(25679L, 25681L, NA), station = structure(c(2L,
3L, 1L), .Label = c("", " ", "UE9 Kern"), class = "factor"),
gear = structure(c(2L, 3L, 1L), .Label = c("", "CORBOX150",
"CORCRB050"), class = "factor"), sample = structure(c(2L,
3L, 1L), .Label = c("", "UE4", "UE9"), class = "factor"),
lat = c(53.9015, 54.0167, 54.0167), lon = c(7.8617, 7.3982,
7.3982), date = structure(c(1L, 1L, 1L), .Label = "15.07.1987", class = "factor"),
depth = c(19L, 33L, 33L)), .Names = c("stationid", "station",
"gear", "sample", "lat", "lon", "date", "depth"), class = "data.frame", row.names = c(NA,
-3L))
答案 0 :(得分:2)
与NA
的任何比较都会产生NA
的结果(请参阅http://cran.r-project.org/doc/manuals/R-intro.html#Missing-values)...您可以使用
df[df$stationid==25679 & !is.na(df$stationid),]
或(如上面的评论所示)
df[which(df$stationid==25679),]
或
subset(df,stationid==25679)
(subset
有时会产生丢失NA
值的不良副作用,但在这种情况下,它正是你做想要的那样)
答案 1 :(得分:1)
另一个解决方案是df[df$stationid==25679 & !is.na(df$stationid),]
。更长但更明确。