自动分离已经相乘的两个图像

时间:2012-08-19 17:25:13

标签: c++ image matlab image-processing

我正在寻找可用于将两个图像相乘的算法或C ++ / Matlab库。下面给出了该问题的可视示例。

图像1可以是任何东西(例如相对复杂的场景)。图像2非常简单,可以在数学上生成。图像2总是具有相似的形态(即下降趋势)。通过将图像1乘以图像2(使用逐点乘法),我们得到一个变换后的图像。

鉴于仅转换后的图像,我想估计图像1或图像2.是否有算法可以做到这一点?

以下是Matlab代码和图片:

load('trans.mat');
imageA = imread('room.jpg');
imageB = abs(response);  % loaded from MAT file

[m,n] = size(imageA);
image1 = rgb2gray( imresize(im2double(imageA), [m n]) );
image2 = imresize(im2double(imageB), [m n]);

figure; imagesc(image1); colormap gray; title('Image 1 of Room')
colorbar

figure; imagesc(image2); colormap gray; title('Image 2 of Response')
colorbar

% This is image1 and image2 multiplied together (point-by-point)
trans = image1 .* image2;
figure; imagesc(trans); colormap gray; title('Transformed Image')
colorbar

Image 1 Image 2 Transformed image

更新

有很多方法可以解决这个问题。以下是我的实验结果。感谢所有回答我问题的人!

1。图像的低通滤波

如duskwuff所述,采用变换图像的低通滤波器返回图像2的近似值。在这种情况下,低通滤波器是高斯滤波器。您可以看到可以使用低通滤波器识别图像中的乘法噪声。

Original image Gaussian low-pass filtered image

2。同态过滤

根据EitenT的建议,我研究了同态滤波。知道了这种类型的图像过滤的名称,我设法找到了一些我认为在解决类似问题时有用的参考文献。

  1. S上。 P. Banks,信号处理,图像处理和模式识别。纽约:Prentice Hall,1990年。

  2. 一个。 Oppenheim,R。Schafer和J. Stockham,T。,“非线性滤波乘法和卷积信号”,IEEE Transactions on Audio and Electroacoustics,vol。 16,不。 3,pp.437 - 466,1968年9月。

  3. 盲图解卷积:理论和应用。博卡拉顿:CRC出版社,2007年。

  4. Blind图像解卷积书的第5章特别好,并且包含许多对同态滤波的参考。这可能是最通用的方法,可以在许多不同的应用程序中很好地工作。

    第3。使用fminsearch

    进行优化

    根据Serg的建议,我使用了fminsearch的目标函数。由于我知道噪声的数学模型,我能够将其用作优化算法的输入。 此方法完全针对特定问题,并非在所有情况下都有用。

    这是图2的重建:

    Reconstructed image

    这是图像1的重建,通过除以图像2的重建形成:

    Image 1

    这是包含噪音的图像:

    Image containing noise

    源代码

    以下是我的问题的源代码。如代码所示,这是一个非常具体的应用程序,并不适用于所有情况。

    N = 1001;
    q = zeros(N, 1);
    q(1:200) = 55;
    q(201:300) = 120;
    q(301:400) = 70;
    q(401:600) = 40;
    q(601:800) = 100;
    q(801:1001) = 70;
    dt = 0.0042;
    fs = 1 / dt;
    wSize = 101;
    Glim = 20;
    ginv = 0;
    [R, ~, ~] = get_response(N, q, dt, wSize, Glim, ginv);
    rows = wSize;
    cols = N;
    cut_val = 200;
    
    figure; imagesc(abs(R)); title('Matrix output of algorithm')
    colorbar
    
    figure;
    imagesc(abs(R)); title('abs(response)')
    
    figure;
    imagesc(imag(R)); title('imag(response)')
    
    imageA = imread('room.jpg');
    
    % images should be of the same size
    [m,n] = size(R);
    image1 =  rgb2gray( imresize(im2double(imageA), [m n]) );
    
    
    % here is the multiplication (with the image in complex space)
    trans = ((image1.*1i)) .* (R(end:-1:1, :));
    
    
    figure;
    imagesc(abs(trans)); colormap(gray);
    
    
    % take the imaginary part of the response
    imagLogR = imag(log(trans)); 
    
    
    % The beginning and end points are not usable
    Mderiv = zeros(rows, cols-2);
    for k = 1:rows
       val = deriv_3pt(imagLogR(k,:), dt);
       val(val > cut_val) = 0;
       Mderiv(k,:) = val(1:end-1);
    end
    
    
    % This is the derivative of the imaginary part of R
    % d/dtau(imag((log(R)))
    % Do we need to remove spurious values from the matrix?
    figure; 
    imagesc(abs(log(Mderiv)));
    
    
    disp('Running iteration');
    % Apply curve-fitting to get back the values
    % by cycling over the cols
    q0 = 10;
    q1 = 500;
    NN = cols - 2;
    qout = zeros(NN, 1);
    for k = 1:NN
        data = Mderiv(:,k); 
        qout(k) = fminbnd(@(q) curve_fit_to_get_q(q, dt, rows, data),q0,q1);
    end
    
    
    figure; plot(q); title('q value input as vector'); 
    ylim([0 200]); xlim([0 1001])
    
    figure;
    plot(qout); title('Reconstructed q')
    ylim([0 200]); xlim([0 1001])
    
    % make the vector the same size as the other
    qout2 = [qout(1); qout; qout(end)];
    
    % get the reconstructed response
    [RR, ~, ~] = get_response(N, qout2, dt, wSize, Glim, ginv);
    RR = RR(end:-1:1,:);
    
    figure; imagesc(abs(RR)); colormap gray 
    title('Reconstructed Image 2')
    colorbar; 
    
    % here is the reconstructed image of the room
    % NOTE the division in the imagesc function
    check0 = image1 .* abs(R(end:-1:1, :));
    figure; imagesc(check0./abs(RR)); colormap gray
    title('Reconstructed Image 1')
    colorbar; 
    
    figure; imagesc(check0); colormap gray
    title('Original image with noise pattern')
    colorbar; 
    
    function [response, L, inte] = get_response(N, Q, dt, wSize, Glim, ginv)
    
    fs = 1 / dt; 
    Npad = wSize - 1; 
    N1 = wSize + Npad;
    N2 = floor(N1 / 2 + 1);
    f = (fs/2)*linspace(0,1,N2);
    omega = 2 * pi .* f';
    omegah = 2 * pi * f(end);
    sigma2 = exp(-(0.23*Glim + 1.63));
    
    sign = 1;
    if(ginv == 1)
        sign = -1;
    end
    
    ratio = omega ./ omegah;
    rs_r = zeros(N2, 1);  
    rs_i = zeros(N2, 1);   
    termr = zeros(N2, 1);
    termi = zeros(N2, 1);
    termr_sub1 = zeros(N2, 1);
    termi_sub1 = zeros(N2, 1);
    response = zeros(N2, N);
    L = zeros(N2, N);
    inte = zeros(N2, N);
    
     % cycle over cols of matrix
    for ti = 1:N               
    
        term0 = omega ./ (2 .* Q(ti));
        gamma = 1 / (pi * Q(ti));
    
        % calculate for the real part
        if(ti == 1)
            Lambda = ones(N2, 1);
            termr_sub1(1) = 0;  
            termr_sub1(2:end) = term0(2:end) .* (ratio(2:end).^-gamma);  
        else
            termr(1) = 0; 
            termr(2:end) = term0(2:end) .* (ratio(2:end).^-gamma); 
            rs_r = rs_r - dt.*(termr + termr_sub1);
            termr_sub1 = termr;
            Beta = exp( -1 .* -0.5 .* rs_r );
    
            Lambda = (Beta + sigma2) ./ (Beta.^2 + sigma2);  % vector
        end 
    
        % calculate for the complex part  
        if(ginv == 1)  
            termi(1) = 0;
            termi(2:end) = (ratio(2:end).^(sign .* gamma) - 1) .* omega(2:end);
        else
            termi = (ratio.^(sign .* gamma) - 1) .* omega;
        end
        rs_i = rs_i - dt.*(termi + termi_sub1);
        termi_sub1 = termi;
        integrand = exp( 1i .* -0.5 .* rs_i );
    
        L(:,ti) = Lambda;
        inte(:,ti) = integrand;
    
        if(ginv == 1) 
            response(:,ti) = Lambda .* integrand;
        else        
            response(:,ti) = (1 ./ Lambda) .* integrand;
        end  
    end % ti loop
    
    function sse = curve_fit_to_get_q(q, dt, rows, data)
    
    % q = trial q value
    % dt = timestep
    % rows = number of rows
    % data = actual dataset
    
    fs = 1 / dt;
    N2 = rows;
    f = (fs/2)*linspace(0,1,N2);  % vector for frequency along cols
    omega = 2 * pi .* f';
    omegah = 2 * pi * f(end);
    ratio = omega ./ omegah;
    
    gamma = 1 / (pi * q);
    
    % calculate for the complex part  
    termi = ((ratio.^(gamma)) - 1) .* omega;
    
    % for now, just reverse termi 
    termi = termi(end:-1:1);
    % 
    
    % Do non-linear curve-fitting
    
    % termi is a column-vector with the generated noise pattern 
    % data is the log-transformed image
    % sse is the value that is returned to fminsearchbnd
    Error_Vector =  termi - data;
    sse = sum(Error_Vector.^2);
    
    function output = deriv_3pt(x, dt)
    
    N = length(x);
    N0 = N - 1;
    output = zeros(N0, 1);
    denom = 2 * dt;
    
    for k = 2:N0 
       output(k - 1) = (x(k+1) - x(k-1)) / denom;  
    end
    

2 个答案:

答案 0 :(得分:5)

这将是一个困难的,不可靠的过程,因为你从根本上试图提取已经被破坏的信息(两个图像的分离)。把它完美地带回来是不可能的;你能做的最好的就是猜测。

如果第二个图像总是相对“平滑”,则可以通过对变换后的图像应用强低通滤波器来重建它(或者至少是它的近似值)。有了这个,您可以反转乘法,或等效地使用互补高通滤波器来获得第一个图像。它不会完全相同,但它至少会成为一种东西。

答案 1 :(得分:3)

我会尝试在Matlab中进行约束优化(fmincon)。 如果您了解第二个图像的来源/性质,您可能可以定义一个生成类似噪声模式的多变量函数。目标函数可以是生成的噪声图像与最后一个图像之间的相关性。