我试图获得两张照片之间的差异数量。 当我以灰度比较2个图像时,pixDiff<> 0但是当它到达RGB时,pixDiff总是为0。
我使用了openCV的比较,也使用了自定义循环。
Mat frame, oldFrame;
cap >> oldFrame;
if(analyseMod == MONOCHROME)
cvtColor(oldFrame, oldFrame, CV_BGR2GRAY);
nbChannels = oldFrame.channels();
while(1)
{
pixDiff = 0;
cap >> frame;
//Test diff
Mat diff;
compare(oldFrame, frame, diff, CMP_NE);
imshow("video 0", diff);
imshow("video 1", frame);
if(analyseMod == MONOCHROME)
{
cvtColor(frame, frame, CV_BGR2GRAY);
for(int i=0; i<frame.rows; i++)
for(int j=0; j<frame.cols; j++)
if(frame.at<uchar>(i,j) < oldFrame.at<uchar>(i,j) - similarPixelTolerance || frame.at<uchar>(i,j) > oldFrame.at<uchar>(i,j) + similarPixelTolerance)
pixDiff++;
}
else if(analyseMod == RGB)
{
uint8_t *f = (uint8_t *)frame.data;
uint8_t *o = (uint8_t *)oldFrame.data;
for(int i=0; i<frame.rows; i++)
{
for(int j=0; j<frame.cols; j++)
{
if(f[nbChannels*i*frame.cols + j + RED] < o[nbChannels*i*oldFrame.cols + j + RED])
pixDiff++;
}
}
}
frame.copyTo(oldFrame);
cout << pixDiff;
if(waitKey(30) >= 0) break;
}
寻求帮助
答案 0 :(得分:3)
我仍然没有得到它,你为什么不在RGB情况下使用delta,但如果你想分别考虑颜色通道,这里是两种情况的解决方案。对于单色情况,将CN
设置为1,对于RGB情况,将const int CN = 3; // 3 for RGB, 1 for monochrome
uint8_t *f = frame.ptr<uint8_t>();
uint8_t *o = oldFrame.ptr<uint8_t>();
for(int i = 0; i < frame.rows; ++i)
{
for(int j = 0; j < frame.cols; ++j)
{
for (int c = 0; c < CN; ++c)
{
if (abs(*f - *o) > similarPixelTolerance) ++pxDiff;
++f, ++o;
}
}
}
设置为3。
at
以这种方式访问像素比为每个像素调用{{1}}更有效。唯一可能的问题是如果你的图像中有一些填充,但默认情况下OpenCV使用连续分配。