我在CUDA上有一个Jacobi实现,但问题是:
我以这种方式分配线程:
#define imin(a,b) (a < b ? a : b)
int dimBlocks, dimThreads;
dimThreads = 256;
dimBlocks = imin(32, (dimThreads + dim - 1)/dimThreads);
但如果我使用32个线程,它比使用256个线程还要快......或者
我得到了这些结果:
Sequential times:
9900 5.882000
9900 6.071000
Parallel times:
9900 1.341000 //using 32
9900 1.626000 //using 256
9900是矩阵WIDTH ......我们可以看到以下内容:
5.882 / 1.34 = 4.39
6.07 / 1.62 = 3.74
那么32个线程比256更有效吗?
抱歉,我不知道是否应该上传代码(因为它们有点长),如果你要求我会这样做。
编辑:
//Based on doubletony algorithm
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include "Jacobi.cuh"
#include "thrust\host_vector.h"
#include "thrust\device_vector.h"
#include "thrust\extrema.h"
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <ctime>
#define imin(a,b) (a < b ? a : b)
// name OF FUNCTION: __copy_vector
// PURPOSE:
// The function will copy a vector.
//
// PARAMETERS:
// name type value/reference description
// ---------------------------------------------------------------------
// source double* value vector to be copied
// dest double* reference vector copied
// dim int value vector dimension
// RETURN VALUE:
// name type description
// ---------------------------------------------------------------------
//
__global__ void __copy_vector(double *source, double *dest, const int dim)
{
int tIdx = blockDim.x * blockIdx.x + threadIdx.x;
while(tIdx < dim){
dest[tIdx] = source[tIdx];
tIdx += gridDim.x * blockDim.x;
}
}
// name OF FUNCTION: __Jacobi_sum
// PURPOSE:
// The function will execute matrix vector multiplication
//
// PARAMETERS:
// name type value/reference description
// ---------------------------------------------------------------------
// A double* value A
// B double* value B
// C double* reference A*B
// dim int value vector dimension
// RETURN VALUE:
// name type description
// ---------------------------------------------------------------------
//
__global__ void __Jacobi_sum(const double *A,
const double *B,
double *resul,
const int dim)
{
int tIdx = blockIdx.x * blockDim.x + threadIdx.x;
while(tIdx < dim){
resul[tIdx] = 0;
for(int i = 0; i < dim; i++)
if(tIdx != i)
resul[tIdx] += A[tIdx * dim + i] * B[i];
tIdx += gridDim.x * blockDim.x;
}
__syncthreads;
}
// name OF FUNCTION: __substract
// PURPOSE:
// The function will execute A-B=resul
//
// PARAMETERS:
// name type value/reference description
// ---------------------------------------------------------------------
// A double* value A
// B double* value B
// C double* reference A-B
// dim int value vector dimension
// RETURN VALUE:
// name type description
// ---------------------------------------------------------------------
//
__global__ void __substract(const double *A,
const double *B,
double *C,
const int dim)
{
int tIdx = blockIdx.x * blockDim.x + threadIdx.x;
while(tIdx < dim){
C[tIdx] = A[tIdx] - B[tIdx];
tIdx += gridDim.x * blockDim.x;
}
}
// name OF FUNCTION: __divide
// PURPOSE:
// The function will execute the jacobi division, that is,
// (B-sum)/A[i,i]
//
// PARAMETERS:
// name type value/reference description
// ---------------------------------------------------------------------
// A double* value A
// B double* reference (B-sum)/A[i,i]
// dim int value vector dimension
// RETURN VALUE:
// name type description
// ---------------------------------------------------------------------
//
__global__ void __divide(const double *A, double *B, const int dim)
{
int tIdx = blockIdx.x * blockDim.x + threadIdx.x;
while(tIdx < dim){
//if(A[tIdx * dim + tIdx] != 0)
B[tIdx] /= A[tIdx * dim + tIdx];
tIdx += blockDim.x * gridDim.x;
}
}
// name OF FUNCTION: __absolute
// PURPOSE:
// The function will calculate the absolute value for each
// number in an array
//
// PARAMETERS:
// name type value/reference description
// ---------------------------------------------------------------------
// A double* reference |A[i]|
// dim int value vector dimension
// RETURN VALUE:
// name type description
// ---------------------------------------------------------------------
//
__global__ void __absolute(double *A, const int dim)
{
int tIdx = blockIdx.x * blockDim.x + threadIdx.x;
while(tIdx < dim){
if(A[tIdx] < 0)
A[tIdx] = -A[tIdx];
tIdx += blockDim.x * gridDim.x;
}
}
// name OF FUNCTION: Jacobi_Cuda
// PURPOSE:
// The function will calculate a X solution for a linear system
// using Jacobi's Method.
//
// PARAMETERS:
// name type value/reference description
// ---------------------------------------------------------------------
// Matrix_A double* value Matrix A(coefficients)
// Vector_B double* value Vector B
// Vector_X double* reference Solution
// dim int value Matrix Dimension
// e double value Error allowed
// maxIter int value Maximum iterations allowed
// RETURN VALUE:
// name type description
// ---------------------------------------------------------------------
//
void Jacobi_Cuda(const double *Matrix_A,
const double *Vector_B,
double *Vector_X,
const int dim,
const double e,
const int maxIter,
double *t)
{
/** Host variables **/
int iter = 0; // iter counter
double err = 1; // error between X^k and X^k-1
double *tmp; // temporary for thrust norm
double *norm; // Vector norm
tmp = (double *) malloc(sizeof(double) * dim);
norm = (double *) malloc(sizeof(double));
int dimBlocks, dimThreads;
dimThreads = 64;
dimBlocks = imin(32, (dim + dimThreads - 1)/dimThreads);
/** ************** **/
/** Device variables **/
double *d_Matrix_A, *d_Vector_B, *d_Vector_X, *d_Vector_Y, *d_Vector_Resul;
cudaMalloc((void**)&d_Matrix_A, sizeof(double) * dim * dim);
cudaMalloc((void**)&d_Vector_B, sizeof(double) * dim);
cudaMalloc((void**)&d_Vector_X, sizeof(double) * dim);
cudaMalloc((void**)&d_Vector_Y, sizeof(double) * dim);
cudaMalloc((void**)&d_Vector_Resul, sizeof(double) * dim);
/** **************** **/
/** Initialize **/
cudaMemcpy(d_Matrix_A, Matrix_A, sizeof(double) * dim * dim,
cudaMemcpyHostToDevice);
cudaMemcpy(d_Vector_B, Vector_B, sizeof(double) * dim, cudaMemcpyHostToDevice);
cudaMemcpy(d_Vector_X, Vector_X, sizeof(double) * dim, cudaMemcpyHostToDevice);
/** ********** **/
clock_t start,finish;
double totaltime;
start = clock();
/** Jacobi **/
while(err > e && iter < maxIter){
__copy_vector<<<dimBlocks, dimThreads>>>(d_Vector_X, d_Vector_Y, dim);
__Jacobi_sum<<<dimBlocks, dimThreads>>>(d_Matrix_A, d_Vector_Y,
d_Vector_Resul, dim);
__substract<<<dimBlocks, dimThreads>>>(d_Vector_B, d_Vector_Resul,
d_Vector_X, dim);
__divide<<<dimBlocks, dimThreads>>>(d_Matrix_A, d_Vector_X, dim);
__substract<<<dimBlocks, dimThreads>>>(d_Vector_Y, d_Vector_X,
d_Vector_Resul, dim);
__absolute<<<dimBlocks, dimThreads>>>(d_Vector_Resul, dim);
cudaMemcpy(tmp, d_Vector_Resul, sizeof(double) * dim, cudaMemcpyDeviceToHost);
double *t = thrust::max_element(tmp, tmp + dim); //vector norm
err = *t;
iter++;
}
finish = clock();
totaltime=(double)(finish-start)/CLOCKS_PER_SEC;
*t = totaltime;
cudaMemcpy(Vector_X, d_Vector_X, sizeof(double) * dim,
cudaMemcpyDeviceToHost);
if(iter == maxIter)
puts("Jacobi has reached maxIter!");
/** ****** **/
/** Free memory **/
cudaFree(d_Matrix_A);
cudaFree(d_Vector_B);
cudaFree(d_Vector_X);
cudaFree(d_Vector_Y);
cudaFree(d_Vector_Resul);
free(tmp);
free(norm);
/** *********** **/
}
答案 0 :(得分:4)
这取决于您的算法。根据定义,一些算法是不可并行化的(例如,计算Fibonacci series)。但这是布朗的parallelizable Jacobi algorithm礼貌。请注意,求解方程组可以串行或并行求解,只需编写代码即可。
简而言之,除非您向我们展示(或至少解释)算法,否则无法知道more threads = more speed
是否{{1}}。就线程同步而言,CUDA非常(非常)擅长规范化同步成本,因此(如果算法合适),更多线程几乎总能产生更快的速度。
答案 1 :(得分:0)
如果工作负载足够小,管理多个线程的开销会导致性能下降,那么更少的线程可能会更有效。
...但是没有看到你的代码就很难说了。就个人而言,我更倾向于认为它只是代码中的一个错误。