PHP:数字数组可以加起来

时间:2012-08-13 10:13:39

标签: php numbers sum add

这不仅仅是一个难题。我实际上找到了一个解决方案,但它很慢,我以为我丢失了我的网络连接(见下文)。

问题在于:

假设我有一系列数字,如下:

$numbers_array = array(1, 2, 3, 4, 5, 6, 7, 8, 9);

我们还要说我有一些数字,存储在如下的变量中:

$sum = 15;
$sum2 = 24;
$sum3 = 400;

我正在尝试创建一个函数,如果$numbers_array中的任何数字可以加在一起(每次仅使用一次)以形成总和,则返回true:

function is_summable($array_of_nums, $sum_to_check) {
    //What to put here?
}

var_dump(is_summable($numbers_array, $sum));
var_dump(is_summable($numbers_array, $sum2));
var_dump(is_summable($numbers_array, $sum3));

以上应输出:

bool(true)
bool(true)
bool(false)

因为7 + 8 = 15,7 + 8 + 9 = 24,但1-9的组合不能产生200.

这是我极其缓慢的解决方案:

function is_summable($numbers, $sum) {
    //Sort provided numbers and assign numerical keys.
    asort($numbers);
    $numbers = array_values($numbers);

    //Var for additions and var for number of provided numbers.
    $total = 0;
    $numbers_length = count($numbers);

    //Empty var to fill below.
    $code = '';

    //Loop and add for() loops.
    for ($i = 0; $i < $numbers_length; $i++) {
        $code .= 'for ($n' . $i . ' = 0; $n' . $i . ' < ' . $numbers_length . '; $n' . $i . '++) {';

        if ($i != 0) {
            $code .= 'if ($n' . $i . ' != $n' . ($i - 1) . ') {';
        }

        $code .= '$total += intval($numbers[$n' . $i . ']);';
        $code .= 'if ($total == $sum) {';
        $code .= 'return true;';
        $code .= '}';
    }

    //Add ending bracket for for() loops above.
    for ($l = 0; $l < $numbers_length; $l++) {
        $code .= '$total -= intval($numbers[$n' . $i . ']);';
        if ($l != 0) {
            $code .= '}';
        }
        $code .= '}';
    }

    //Finally, eval the code.
    eval($code);

    //If "true" not returned above, return false.
    return false;
}

$num_arr = array(1,2,3,4,5,6,7,8,9);
var_dump(is_summable($num_arr, 24));

http://pastebin.com/1nawuwXK

一如既往,感谢帮助!!

1 个答案:

答案 0 :(得分:3)

你的问题实际上是一个标准的算法问题(正如Jon提到的背包问题),更具体地说是Subset sum problem。它可以在多项式时间内求解(看wiki page)。

伪代码:

initialize a list S to contain one element 0.
for each i from 1 to N do
  let T be a list consisting of xi + y, for all y in S
  let U be the union of T and S
  sort U
  make S empty 
  let y be the smallest element of U 
  add y to S 
  for each element z of U in increasing order do
     //trim the list by eliminating numbers close to one another
     //and throw out elements greater than s
    if y + cs/N < z ≤ s, set y = z and add z to S 
if S contains a number between (1 − c)s and s, output yes, otherwise no