使用opencv2.4检测方块

时间:2012-08-11 08:49:17

标签: opencv object-detection

我使用程序检测图像中的方块。这与我从互联网上下载的图像很好地配合。但我该怎么做才能检测从相机拍摄的图像的正方形。首先,我从视频中提取图像,然后我尝试从这些图像集中检测正方形,但代码不适用于那些提取的图像(但这对其他图像效果很好)。我该怎么做才能完成这项任务?

#ifdef _CH_
#pragma package <opencv>
#endif

#define CV_NO_BACKWARD_COMPATIBILITY

#include <opencv2/opencv.hpp> 
#include "stdafx.h"
#include "cv.h"
#include "highgui.h"
#include <stdio.h>
#include <math.h>
#include <string.h>

int thresh = 50;
IplImage* img = 0;
IplImage* img0 = 0;
CvMemStorage* storage = 0;
//const char* wndname = "Square Detection Demo";

// helper function:
// finds a cosine of angle between vectors
// from pt0->pt1 and from pt0->pt2
double angle( CvPoint* pt1, CvPoint* pt2, CvPoint* pt0 )
{
    double dx1 = pt1->x - pt0->x;
    double dy1 = pt1->y - pt0->y;
    double dx2 = pt2->x - pt0->x;
    double dy2 = pt2->y - pt0->y;
    return (dx1*dx2 + dy1*dy2)/sqrt((dx1*dx1 + dy1*dy1)*(dx2*dx2 + dy2*dy2) + 1e-10);
}

// returns sequence of squares detected on the image.
// the sequence is stored in the specified memory storage
CvSeq* findSquares4( IplImage* img, CvMemStorage* storage )
{
    CvSeq* contours;
    int i, c, l, N = 11;
    CvSize sz = cvSize( img->width & -2, img->height & -2 );
    IplImage* timg = cvCloneImage( img ); // make a copy of input image
    IplImage* gray = cvCreateImage( sz, 8, 1 );
    IplImage* pyr = cvCreateImage( cvSize(sz.width/2, sz.height/2), 8, 3 );
    IplImage* tgray;
    CvSeq* result;
    double s, t;
    // create empty sequence that will contain points -
    // 4 points per square (the square's vertices)
    CvSeq* squares = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvPoint), storage );

    // select the maximum ROI in the image
    // with the width and height divisible by 2
    cvSetImageROI( timg, cvRect( 0, 0, sz.width, sz.height ));

    // down-scale and upscale the image to filter out the noise
    cvPyrDown( timg, pyr, 7 );
    cvPyrUp( pyr, timg, 7 );
    tgray = cvCreateImage( sz, 8, 1 );

    // find squares in every color plane of the image
    for( c = 0; c < 3; c++ )
    {
        // extract the c-th color plane
        cvSetImageCOI( timg, c+1 );
        cvCopy( timg, tgray, 0 );

        // try several threshold levels
        for( l = 0; l < N; l++ )
        {
            // hack: use Canny instead of zero threshold level.
            // Canny helps to catch squares with gradient shading
            if( l == 0 )
            {
                // apply Canny. Take the upper threshold from slider
                // and set the lower to 0 (which forces edges merging)
                cvCanny( tgray, gray, 0, thresh, 5 );
                // dilate canny output to remove potential
                // holes between edge segments
                cvDilate( gray, gray, 0, 1 );
            }
            else
            {
                // apply threshold if l!=0:
                //     tgray(x,y) = gray(x,y) < (l+1)*255/N ? 255 : 0
                cvThreshold( tgray, gray, (l+1)*255/N, 255, CV_THRESH_BINARY );
            }

            // find contours and store them all as a list
            cvFindContours( gray, storage, &contours, sizeof(CvContour),
                CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE, cvPoint(0,0) );

            // test each contour
            while( contours )
            {
                // approximate contour with accuracy proportional
                // to the contour perimeter
                result = cvApproxPoly( contours, sizeof(CvContour), storage,
                    CV_POLY_APPROX_DP, cvContourPerimeter(contours)*0.02, 0 );
                // square contours should have 4 vertices after approximation
                // relatively large area (to filter out noisy contours)
                // and be convex.
                // Note: absolute value of an area is used because
                // area may be positive or negative - in accordance with the
                // contour orientation
                if( result->total == 4 &&
                    cvContourArea(result,CV_WHOLE_SEQ,0) > 1000 &&
                    cvCheckContourConvexity(result) )
                {
                    s = 0;

                    for( i = 0; i < 5; i++ )
                    {
                        // find minimum angle between joint
                        // edges (maximum of cosine)
                        if( i >= 2 )
                        {
                            t = fabs(angle(
                            (CvPoint*)cvGetSeqElem( result, i ),
                            (CvPoint*)cvGetSeqElem( result, i-2 ),
                            (CvPoint*)cvGetSeqElem( result, i-1 )));
                            s = s > t ? s : t;
                        }
                    }

                    // if cosines of all angles are small
                    // (all angles are ~90 degree) then write quandrange
                    // vertices to resultant sequence
                    if( s < 0.3 )
                        for( i = 0; i < 4; i++ )
                            cvSeqPush( squares,
                                (CvPoint*)cvGetSeqElem( result, i ));
                }

                // take the next contour
                contours = contours->h_next;
            }
        }
    }

    // release all the temporary images
    cvReleaseImage( &gray );
    cvReleaseImage( &pyr );
    cvReleaseImage( &tgray );
    cvReleaseImage( &timg );

    return squares;
}


// the function draws all the squares in the image
void drawSquares( IplImage* img, CvSeq* squares )
{
    CvSeqReader reader;
    IplImage* cpy = cvCloneImage( img );
    int i;

    // initialize reader of the sequence
    cvStartReadSeq( squares, &reader, 0 );

    // read 4 sequence elements at a time (all vertices of a square)
    for( i = 0; i < squares->total; i += 4 )
    {
        CvPoint pt[4], *rect = pt;
        int count = 4;

        // read 4 vertices
        CV_READ_SEQ_ELEM( pt[0], reader );
        CV_READ_SEQ_ELEM( pt[1], reader );
        CV_READ_SEQ_ELEM( pt[2], reader );
        CV_READ_SEQ_ELEM( pt[3], reader );

        // draw the square as a closed polyline
        cvPolyLine( cpy, &rect, &count, 1, 1, CV_RGB(0,255,0), 3, CV_AA, 0 );
    }

    // show the resultant image
    cvShowImage( "Square Detection Demo", cpy );
    cvReleaseImage( &cpy );
}


//char* names[] = { "pic1.png", "pic2.png", "pic3.png",
                 // "pic4.png", "pic5.png", "pic6.png", 0 };

int main(int argc, char** argv)
{
    int i, c;
    // create memory storage that will contain all the dynamic data
    storage = cvCreateMemStorage(0);

    //for( i = 0; names[i] != 0; i++ )
    //{
    //    // load i-th image
    //    img0 = cvLoadImage( names[i], 1 );
    //    if( !img0 )
    //    {
    //        printf("Couldn't load %s\n", names[i] );
    //        continue;
    //    }
        img0 = cvLoadImage("frame_21.jpg");
        img = cvCloneImage( img0 );

        // create window and a trackbar (slider) with parent "image" and set callback
        // (the slider regulates upper threshold, passed to Canny edge detector)
       // cvNamedWindow( "qq");

        // find and draw the squares
        drawSquares( img, findSquares4( img, storage ) );

        // wait for key.
        // Also the function cvWaitKey takes care of event processing
        c = cvWaitKey(0);
        // release both images
        cvReleaseImage( &img );
        cvReleaseImage( &img0 );
        // clear memory storage - reset free space position
        cvClearMemStorage( storage );
        /*if( (char)c == 27 )
            break;*/
  /*  }*/

//    cvDestroyWindow( "qq" );

    return 0;
}

这是从视频中提取的样本图像-----&gt; road sign

1 个答案:

答案 0 :(得分:1)

我测试了不同图像上的代码,它适用于所有图像,有一个if条件是findsuqares4函数

                if( result->total == 4 &&
                cvContourArea(result,CV_WHOLE_SEQ,0) > 10000 &&
                cvCheckContourConvexity(result) )

10000是要检测的方块的阈值。我的意思是检测到面积超过10000的正方形将被丢弃。所以你需要根据你的要求改变门槛。我上传了一个阈值为100的结果。查看结果。

Squares detected