堆叠多个图,垂直使用相同的x轴但在R中使用不同的Y轴

时间:2012-08-03 11:01:12

标签: r plot data-visualization

我有一个data.frame,其中包含针对日期:时间向量的多个时间序列向量。我想绘制所有相关的矢量,垂直堆叠在具有相同X轴但具有唯一Y轴的单独图形上。与此类似的图表:enter image description here

我的数据如下:

 dt <- structure(list(DEPTH = c(156, 156.5, 157.4, 158.15, 158.8, 159.2, 
159.75, 160.35, 160.85, 161.1, 161.6, 162.05, 162.5, 162.65, 
163.15, 163.45, 163.55, 163.8, 163.65, 163.75, 163.8, 163.8, 
163.75, 164.45, 164.8, 165.35, 165.65, 165.75, 166.1, 166.75, 
167, 167.2, 167.65, 168, 168.8, 169.3, 169.7, 170.2, 170.65, 
170.9, 171.45, 171.65, 172, 172.1, 172.25, 173, 173.4, 173.9, 
174.2, 174.6, 175, 175.25, 175.45, 175.9, 176.25, 176.7, 177, 
177.15, 177.5, 178, 178.5, 179.05, 179.2, 180.7, 181.05, 181.25, 
181.5, 181.7, 182.1, 182.3, 182.35, 182.75, 183.1, 183.65, 184.3, 
184.6, 185.1, 185.15, 185.3, 185.15, 185.25, 185.3, 185.15), 
    Smooth.Vert.Speed = c(-0.550000000000011, -0.5, -0.900000000000006, 
    -0.75, -0.650000000000006, -0.399999999999977, -0.550000000000011, 
    -0.599999999999994, -0.5, -0.25, -0.5, -0.450000000000017, 
    -0.449999999999989, -0.150000000000006, -0.5, -0.299999999999983, 
    -0.100000000000023, -0.25, 0.150000000000006, -0.0999999999999943, 
    -0.0500000000000114, 0, 0.0500000000000114, -0.699999999999989, 
    -0.350000000000023, -0.549999999999983, -0.300000000000011, 
    -0.0999999999999943, -0.349999999999994, -0.650000000000006, 
    -0.25, -0.199999999999989, -0.450000000000017, -0.349999999999994, 
    -0.800000000000011, -0.5, -0.399999999999977, -0.5, -0.450000000000017, 
    -0.25, -0.549999999999983, -0.200000000000017, -0.349999999999994, 
    -0.0999999999999943, -0.150000000000006, -0.75, -0.400000000000006, 
    -0.5, -0.299999999999983, -0.400000000000006, -0.400000000000006, 
    -0.25, -0.199999999999989, -0.450000000000017, -0.349999999999994, 
    -0.449999999999989, -0.300000000000011, -0.150000000000006, 
    -0.349999999999994, -0.5, -0.5, -0.550000000000011, -0.149999999999977, 
    -1.5, -0.350000000000023, -0.199999999999989, -0.25, -0.199999999999989, 
    -0.400000000000006, -0.200000000000017, -0.049999999999983, 
    -0.400000000000006, -0.349999999999994, -0.550000000000011, 
    -0.650000000000006, -0.299999999999983, -0.5, -0.0500000000000114, 
    -0.150000000000006, 0.150000000000006, -0.0999999999999943, 
    -0.0500000000000114, 0.150000000000006), DIVE_SURF = c("dive21", 
    "dive21", "dive21", "dive21", "dive21", "dive21", "dive21", 
    "dive21", "dive21", "dive21", "dive21", "dive21", "dive21", 
    "dive21", "dive21", "dive21", "dive21", "dive21", "dive21", 
    "dive21", "dive21", "dive21", "dive21", "dive21", "dive21", 
    "dive21", "dive21", "dive21", "dive21", "dive21", "dive21", 
    "dive21", "dive21", "dive21", "dive21", "dive21", "dive21", 
    "dive21", "dive21", "dive21", "dive21", "dive21", "dive21", 
    "dive21", "dive21", "dive21", "dive21", "dive21", "dive21", 
    "dive21", "dive21", "dive21", "dive21", "dive21", "dive21", 
    "dive21", "dive21", "dive21", "dive21", "dive21", "dive21", 
    "dive21", "dive21", "dive21", "dive21", "dive21", "dive21", 
    "dive21", "dive21", "dive21", "dive21", "dive21", "dive21", 
    "dive21", "dive21", "dive21", "dive21", "dive21", "dive21", 
    "dive21", "dive21", "dive21", "dive21"), X = c(2050L, 2062L, 
    2026L, 2078L, 2058L, 2076L, 2050L, 2068L, 2060L, 2078L, 2058L, 
    2088L, 2080L, 2065L, 2088L, 2076L, 2084L, 2105L, 2084L, 2102L, 
    2123L, 2096L, 2074L, 2054L, 2090L, 2089L, 2080L, 2078L, 2068L, 
    2092L, 2084L, 2082L, 2094L, 2056L, 2062L, 2067L, 2082L, 2084L, 
    2091L, 2058L, 2076L, 2098L, 2104L, 2090L, 2058L, 2050L, 2080L, 
    2074L, 2074L, 2082L, 2070L, 2088L, 2062L, 2062L, 2082L, 2086L, 
    2070L, 2081L, 2092L, 2058L, 2060L, 2076L, 2094L, 2083L, 2072L, 
    2107L, 2104L, 2066L, 2110L, 2104L, 2072L, 2076L, 2065L, 2042L, 
    2066L, 2093L, 2080L, 2083L, 2108L, 2107L, 2086L, 2096L, 2126L
    ), Y = c(2036L, 2000L, 2049L, 1966L, 2042L, 2078L, 2072L, 
    2055L, 2036L, 2128L, 2044L, 2112L, 2066L, 2051L, 2102L, 2060L, 
    2054L, 2043L, 2034L, 2086L, 1980L, 2076L, 2003L, 2033L, 2107L, 
    1992L, 2028L, 2027L, 2024L, 2005L, 2050L, 2010L, 1944L, 2010L, 
    2046L, 2020L, 2088L, 2086L, 2034L, 2066L, 2060L, 2152L, 2044L, 
    2078L, 2040L, 2067L, 2080L, 2072L, 2073L, 2028L, 2066L, 2082L, 
    2030L, 2042L, 1990L, 2076L, 2054L, 2064L, 2016L, 2048L, 2029L, 
    2008L, 2090L, 2038L, 2026L, 2096L, 2002L, 2025L, 2001L, 2098L, 
    2061L, 2022L, 2054L, 2064L, 2043L, 2090L, 2042L, 2086L, 2073L, 
    2066L, 2040L, 2081L, 2087L), Z = c(2488L, 2484L, 2490L, 2486L, 
    2488L, 2492L, 2498L, 2490L, 2492L, 2484L, 2491L, 2494L, 2497L, 
    2493L, 2488L, 2493L, 2494L, 2484L, 2486L, 2487L, 2478L, 2490L, 
    2478L, 2493L, 2490L, 2486L, 2488L, 2486L, 2488L, 2482L, 2488L, 
    2480L, 2480L, 2488L, 2490L, 2490L, 2490L, 2489L, 2492L, 2490L, 
    2486L, 2480L, 2488L, 2491L, 2486L, 2488L, 2488L, 2494L, 2490L, 
    2488L, 2492L, 2498L, 2484L, 2491L, 2480L, 2491L, 2497L, 2487L, 
    2482L, 2490L, 2490L, 2478L, 2488L, 2492L, 2492L, 2482L, 2484L, 
    2489L, 2482L, 2484L, 2485L, 2492L, 2488L, 2493L, 2487L, 2490L, 
    2492L, 2488L, 2490L, 2487L, 2484L, 2486L, 2478L)), .Names = c("DEPTH", 
"Smooth.Vert.Speed", "DIVE_SURF", "X", "Y", "Z"), row.names = 7222:7304, class = "data.frame")

我希望在具有共同X轴的单独图形上绘制DEPTH,X,Y和Z.

4 个答案:

答案 0 :(得分:12)

我同意@PaulHiemstra,ggplot2是要走的路。

假设Smooth.Vert.Speed是您想要绘制DEPTHXYZ的常见x轴变量...

library(ggplot2)
library(reshape2)

# Add time variable as per @BenBolker's suggestion
dt$time <- seq(nrow(dt))

# Use melt to reshape data so values and variables are in separate columns
dt.df <- melt(dt, measure.vars = c("DEPTH", "X", "Y", "Z"))

ggplot(dt.df, aes(x = time, y = value)) +
  geom_line(aes(color = variable)) +
  facet_grid(variable ~ ., scales = "free_y") +
  # Suppress the legend since color isn't actually providing any information
  opts(legend.position = "none")

Plotting multiple y-variables against a common x-variable

答案 1 :(得分:8)

只是为了与众不同,让我提一个既不涉及格子也不涉及ggplot2的解决方案 - 几年前我将这个问题发布到了Romain的R Graph Gallery entry 65the code here。它只是叠加图形,使用par()设置来保持堆叠。

请注意,垂直尺寸可以选择不同,它们也很容易达到相同的高度。

enter image description here

答案 2 :(得分:6)

如果您想要老式,可以使用lattice。与@aaronwolen不同,我假设数据集中缺少time变量,所以我做了一个:

dt$time <- seq(nrow(dt))
library(reshape2)
mm <- melt(subset(dt,select=c(time,DEPTH,X,Y,Z)),id.var="time")
library(lattice)
xyplot(value~time|variable,data=mm,type="l",
       scales=list(y=list(relation="free")),
       layout=c(1,4))

enter image description here

答案 3 :(得分:4)

我实际上已经找到了另一个有趣的方法来使用动物园库:

library(zoo)
z <- with(dt, zoo(cbind(DEPTH, X, Y, Z),as.POSIXct(time))) 
plot.zoo(z,  ylab=c("Depth (m)", "Pitch Angle (degrees)", "Swaying Acceleration (m/s^2)", "Heaving Acceleration (m/s^2)"), col=c("black", "blue", "darkred", "darkgreen"), 
     xlab = c("Time"), lwd=2, ylim=list((rev(range(dt$DEPTH))), c(-90,90), c(-10,10), c(-10,10)))

因此,在动物园图中,您可以创建新的轴标签作为列表表单,所有图表都可以有不同的颜色。